ML-TDR-64-105 2.15 1941 J. Barre # MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED ALUMINUM ALLOY PLATE TECHNICAL DOCUMENTARY REPORT NO. ML-TDR-64-105 MAY 1964 Research and Technology Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio Alle Formation to the professional sections Project No. 7381, Task No. 738103 (Prepared under Contract No. AF33(657)-7837 by Alcoa Research Laboratories, Aluminum Company of America, New Kensington, Pennsylvania; G. W. Stickley and D. J. Brownhill, Authors.) #### NOTICES When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), (formerly ASTIA), Cameron Station, Bldg. 5, 501 Duke Street, Alexandria, Virginia, 22314. This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D. C., for sale to the general public. Copies of this report should not be returned to the Research and Technology Division, Wright-Patterson Air Force Base, Ohio, unless return is required by security considerations, contractual obligations, or notice on a specific document. #### FOREWORD This investigation was conducted by the Alcoa Research Laboratories, Aluminum Company of America, under USAF Contract No. AF33(657)-7837, Project No. 7381, "Materials Applications", Task No. 738103, "Data Collection and Correlation." The work was under the direction of the AF Materials Laboratory, Research and Technology Division, Wright-Patterson Air Force Base, Ohio, with Mr. Clayton L. Harmsworth as project engineer. This report covers work done from March 1962 to April 1964. The investigation was made under the supervision of Mr. G. W. Stickley, with Mr. D. J. Brownhill as project leader. The statistical analyses were made by Mr. W. P. Goepfert, assisted by Mr. J. H. Clouse. #### ABSTRACT The tensile, compressive, shear and bearing properties were determined in the longitudinal and long-transverse directions for a total of 129 lots of commercially produced 2014, 2024, 7075, 7079 and 7178 plate in stress-relieved stretched tempers (-TX51), and in thicknesses from 0.250 to 6.000 in. For thicknesses larger than 2.000 in., tensile and compressive properties were determined in the short-transverse direction. Tests of 35 lots in "heat-treated-by-user" tempers were made. Ratios of tensile, compressive, shear and bearing properties to corresponding long-transverse tensile properties were computed. Some variations in ratios occur with respect to alloy, temper, thickness, location in thickness, and direction of loading. Groups of ratios for each alloy in the -TX51 tempers were analyzed statistically. Minimum-average values were determined. Using these minimum-average values, together with long-transverse tensile properties from specifications as basis "A" values and corresponding basis "B" values obtained from recent production data, tables of design mechanical properties of MIL-HDBK-5 were prepared. Tensile and compressive stress-strain characteristics were determined. Typical and minimum stress-strain and compressive tangent-modulus curves were prepared for MIL-HDBK-5. Key Words: 2014, 2024, 7075, 7079, 7178 Aluminum; Tensile, Compressive, Bearing, Shear Properties; Stretched Stress-Relieved. This technical documentary report has been reviewed and is approved. D. A. SHINN Chief, Materials Information Branch Materials Applications Division AF Materials Laboratory ### TABLE OF CONTENTS | SECTION | | | |---------|-----------------------|------------| | | | PAGE | | 1 | Introduction | 1 | | 2 | Material | 2 | | 3 | | د ـ | | | Procedure " | 3 | | 4 | Results of Tests | 6 | | 5 | Discussion of Results | 7 | | 6 | | í | | • | Conclusions | 13 | | 7 | Recommendations | - 4 | | | | 16 | | | References | 17 | ### TABLES | TABLE | | PAGE | |-------|---|------------| | I | Samples of Plate Received | 18 | | II | Heat Treatment and Stretching Conditions for Stress-Relieved Stretched Plate | 19 | | III | Heat Treatment of -0 or -F Frate to Obtain "Heat-Treated-by-User" Tempers | 20 | | IA | Specified Minimum Values for Aluminum Alloy Plate | 21 | | v | Mechanical Properties of Stress-Relieved
Stretched 2014-T651 Plate | 22 | | VI | Mechanical Properties of Stress-Relieved
Stretched 2024-T351 Plate | 23 | | VII | Mechanical Properties of Stress-Relieved
Stretched 2024-T851 Plate | 25 | | VIII | Mechanical Properties of Stress-Relieved
Stretched 7075-T651 Plate | 26 | | IX | Mechanical Properties of Stress-Relieved
Stretched 7079-T651 Plate | 28 | | x | Mechanical Properties of Stress-Relieved
Stretched 7178-T651 Plate | 30 | | XI | Mechanical Properties of Plate of Several
Aluminum Alloys in the "Heat-Treated-by-
User" Temper | 31 | | XII | Ratios Among the Tensile, Compressive and Shear Properties of Stress-Relieved Stretched 2014-T651 Plate | 34 | | XIII | Ratios Among the Tensile, Compressive and Shear Properties of Stress-Relieved Stretched 2024-T351 Plate | 35 | | XIV | Ratios Among the Tensile, Compressive and Shear Properties of Stress-Relieved Stretched 2024-1851 Plate | 36 | | VX | Ratios Among the Tensile, Compressive and
Shear Properties of Stress-Relieved | <i>)</i> 0 | | | Stretched 7075-T651 Plate | 37 | | TABLE | | PAGE | |-------|--|------| | XVI | Ratios Among the Tensile, Compressive and Shear Properties of Stress-Relieved Stretched 7079-T651 Plate | 38 | | XVII | Ratios Among the Tensile, Compressive and Shear Properties of Stress-Relieved Stretched 7178-T651 Plate | 39 | | XVIII | Ratios Among the Tensile, Compressive and Shear Properties of Plate of Several Aluminum Alloys in the "Heat-Treated-by-User" Temper | 40 | | XIX | Ratios of Bearing Properties to Tensile
Properties of Stress-Relieved Stretched
2014-T651 Plate | 42 | | XX | Ratios of Bearing Properties to Tensile
Properties of Stress-Relieved Stretched
2024-T351 Plate | 43 | | XXI | Ratios of Bearing Properties to Tensile
Properties of Stress-Relieved Stretched
2024-T851 Plate | 44 | | XXII | Ratios of Bearing Properties to Tensile
Properties of Stress-Relieved Stretched
7075-7651 Plate | 45 | | XXIII | Ratios of Bearing Properties to Tensile
Properties of Stress-Relieved Stretched
7079-T651 Plate | 46 | | VXXV | Ratios of Bearing Properties to Tunsile
Properties of Stress-Relieved Stretched
7178-T651 Plate | 47 | | XXV | Ratios of Bearing Properties to Tensile
Properties of Plate of Several Aluminum
Alloys in the "Heat-Treated-by-User"
Temper | 48 | | IVXX | Average Ratios Among Tensile, Compressive,
Shear and Bearing Properties of 2014
Plate | 50 | | XXVII | Average Ratios Among Tensile, Compressive,
Shear and Bearing Properties of 2024
Plate | 51 | | TABLE | | PAGE | |---------|--|------| | XXVIII | Average Ratios Among Tensile, Compressive,
Shear and Bearing Properties of 7075
Plate | 52 | | XXIX | Average Ratios Among Tensile, Compressive,
Shear and Bearing Properties of 7079
Plato | 53 | | XXX | Average Ratios Among Tensile, Compressive,
Shear and Bearing Properties of 7178
Plate | 54 | | XXXI | Statistical Analyses of Ratios Among
Tensile, Compressive, Shear and Flatwise
Bearing Properties of Stress-Relieved
Stretched 2014-T651 Plate | 55 | | XXXII | Statistical Analyses of Ratios Among
Tensile, Compressive, Shear and Flatwise
Bearing Properties of Stress-Relieved
Stretched 2024-T351 Plate | 56 | | XXXIII | Statistical Analyses of Ratios Among
Tensile, Compressive, Shear and Flatwise
Bearing Properties of Stress-Relieved
Stretched 2024-T851 Plate | 57 | | XXXIV | Statistical Analyses of Ratios Among
Tensile, Compressive, Shear and Flatwise
Bearing Properties of Stress-Relieved
Stretched 7075-T651 Plate | 58 | | VXXX | Statistical Analyses of Ratios Among
Tensile, Compressive, Shear and Flatvise
Bearing Properties of Stress-Relieved
Stretched 7079-T651 Plate | 59 | | XXXVI | Statistical Analyses of Ratios Among
Tensile, Compressive, Shear and Flatwise
Bearing Properties of Stress-Relieved
Stretched 7178-T651 Plate | 60 | | IIVXXX | Ratios for Computing Design Mechanical
Properties of Stress-Relieved Stretched
2014-TG: Plate | 61 | | XXXVIII | Ratios for Computing Design Mechanical
Properties of Stress-Relieved Stretched
2024-T351 Plate | 62 | | TABLE | | PAGE | |--------|---|------| | XXXXX | Ratios for Computing Design Mechanical
Properties of Stress-Relieved Stretched
2024-T851 Plate | 63 | | ХL | Ratios for Computing Design Mechanical
Properties of Stress-Relieved Stretched
7075-T651 Plate | 64 | | XLI | Ratios for Computing Design Mechanical
Properties of Stress-Relieved Stretched
7079-T651 Plate | 65 | | XLII | Ratios for Computing Design
Mechanical
Properties of Stress-Relieved Stretched
7178-T651 Plate | 66 | | XLIII | Design Mechanical Properties of 2014-T651
Aluminum Alloy Plate | 67 | | XLIA | Design Mechanical Properties of 2024-7351 and -T851 Aluminum Alloy Plate | 68 | | XLV | Design Mechanical Properties of 7075-T651
Aluminum Alloy Plate | 69 | | XLVI | Design Mechanical Properties of 7079-T651
Aluminum Alloy Plate | 70 | | XLVII | Design Mechanical Properties of 7178-T651
Aluminum Alloy Plate | 71 | | XLVIII | Ratios of Tensile, Compressive, Shear and
Bearing Properties at Center of Thickness
to Those at Midway Location for Stress-
Relieved Stretched Plate of Several
Aluminum Alloys | 72 | | XLIX | Patios of Tensile, Compressive, Shear and Bearing Properties at Center of Thickness to Those at Midway Location for Plate of Several Aluminum Alloys in the "Heat-Treated-by-User" Temper | 74 | | L | Average Ratios Among Properties at Center of Thickness to Those at Midway Location in Aluminum Alloy Plate | 75 | | TABLE | | PAGE | |-------|---|------| | LI | Ratios of Bearing Properties in the Edge-
wise Direction to Those in the Flatwise
Direction for Stress-Relieved Stretched
Plate of Several Aluminum Alloys | 76 | | LII | Ratios of Bearing Properties in the Edge-
wise Direction to Those in the Flatwise
Direction for Flate of Several Aluminum
Alloys in the "Heat-Treated-by-User"
Temper | 77 | | LIII | Average Ratios of Bearing Properties in Edgewise Direction to Those in Flatwise Direction In Aluminum Alloy Plate | 78 | | LIV | Results of Repeated Stress-Strain Tests | 79 | | ĹV | Average Results of Modulus Determinations. | 80 | ### ILLUSTRATIONS | FIGURE | | PAGE | |--------|---|------| | 1 | General Dimensions of Tensile Specimens | 81 | | 2 | General Dimensions of Compressive and Shear Specimens | 82 | | 3 | General Dimensions of Bearing Specimens | 83 | | 4 | Tensile and Compressive Modulus Specimens | 84 | | 5 | Ratios of Tensile (L) and Compressive
Properties to Tensile Properties (LT) vs
Thickness, 2014-T651 Aluminum Alloy
Plate | 85 | | 6 | Ratios of Shear Properties to Tensile
Properties (LT) vs Thickness, 2014-T651
Aluminum Alloy Plate | 86 | | 7 | Ratios of Bearing Properties (Flatwise Specimens) to Tensile Properties (LT) vs Thickness, 2014-T651 Aluminum Alloy Plate | 87 | | 8 | Ratios of Tensile (L) and Compressive
Properties to Tensile Properties (LT) vs
Thickness, 2024-T351 Aluminum Alloy
Plate | 88 | | 9 | Ratios of Shear Properties to Tensile
Properties (LT) vs Thickness, 2024-T351
Aluminum Alloy Plate | 89 | | 10 | Ratios of Bearing Properties (Flatwise Specimens) to Tensile Properties (LT) vs Thickness, 2024-T351 Aluminum Alloy Plate | 90 | | 11 | Ratios of Tensile (L) and Compressive
Properties to Tensile Properties (LT) vs
Thickness, 2024-T851 Aluminum Alloy
Plate | 91 | | 12 | Ratios of Shear Properties to Tensile
Properties (LT) vs Thickness, 2024-T851
Aluminum Alloy Plate | 92 | | 13 | Ratios of Bearing Properties (Flatwise Specimens) to Tensile Properties (LT) vs Thickness, 2024-T851 Aluminum Alloy | | | | Plate | 93 | ### ILLUSTRATIONS (Cont) | FIGURE | | PAGE | |--------|---|------| | 14 | Ratios of Tensile (L) and Compressive Properties to Tensile Properties (LT) vs Thickness, 7075-T651 Aluminum Alloy Plate | 94 | | 15 | Ratios of Shear Properties to Tensile
Properties (LT) vs Thickness, 7075-T651
Aluminum Alloy Plate | 95 | | 16 | Ratios of Bearing Properties (Flatwise Specimens) to Tensile Properties (LT) vs Thickness, 7075-T651 Aluminum Alloy Plate | 96 | | 17 | Ratios of Tensile (L) and Compressive Froperties to Tensile Properties (LT) vs Thickness, 7079-Tt51 Aluminum Alloy Plate | 97 | | 18 | Ratios of Shear Properties to Tensile
Properties (LT) vs Thickness, 7079-T651
Aluminum Alloy Plate | 98 | | 19 | Ratios of Bearing Properties (Flatwise Specimens) to Tensile Properties (LT) vs Thickness, 7079-T651 Aluminum Alloy Plate | 99 | | 20 | Ratios of Tensile (L) and Compressive
Properties to Tensile Properties (LT) vs
Thickness, 7178-T651 Aluminum Alloy
Plate | 100 | | 21. | Ratios of Shear Properties to Tensile
Properties (LT) vs Thickness, 7178-T651
Aluminum Alloy Plate | 101 | | 22 | Ratios of Bearing Properties (Flatwise Specimens) to Tensile Properties (LT) vs Thickness, 7178-T651 Aluminum Alloy Plate | 102 | | 23 | Typical Stress-Strain and Tangent-Modulus Curves for 2014-T651 Aluminum Alloy Plate, 0.250-2.000-in. | 103 | | 5/1 | Minimum ("A" Value) Stress-Strain and Tangent-Modulus Curves for 2014-T651 Aluminum Alloy Plate, 0.250-2.000-in | 104 | ## ILLUSTRATIONS (Cont) | FIGURE | 1 | PAGE | |--------|--|------| | 25 | Typical Stress-Strain and Tangent-Modulus Curves for 2014-T6 Aluminum Alloy Plate, 0.250-2.000-in. (Heat-Treated-By-User) | 105 | | 26 | Typical Stress-Strain and Tangent-Modulus Curves for 2024-T351 Aluminum Alloy Plate, 0.500-2.000-in | 106 | | 27 | Minimum ("A" Value) Stress-Strain and Tangent-
Modulus Curves for 2024-T351 Aluminum Alloy
Plate, 1.001-1.500-in | 107 | | 28 | Typical Stress-Strain and Tangent-Modulus Curves for 2024-T851 Aluminum Alloy Plate, 0.250-1.000-in | 108 | | 29 | Minimum ("A" Value) Stress-Strain and Tangent-
Modulus Curves for 2024-T851 Aluminum Alloy
Plate, 0.250-0.499-in | 109 | | 30 | Typical Stress-Strain and Tangent-Modulus Curves for 2024-T42 Aluminum Alloy Plate, 0.500-1.000-in. (Heat-Treated-By-User) | 110 | | 31 | Typical Stress-Strain and Tangent-Modulus Curves for 2024-T62 Aluminum Alloy Plate, 0.250-1.000-in. (Heat-Treated-By-User) | 111 | | 32 | Typical Stress-Strain and Tangent-Modulus Curves for 7075-T651 Aluminum Alloy Plate, 0.250-2.000-in. | 112 | | 33 | Minimum ("A" Value) Stress-Strain and Tangent-
Modulus Curves for 7075-T651 Aluminum Alloy
Plate, 0.500-1.000-in | 113 | | 34 | Typical Stress-Strain and Tangent-Modulus Curves for 7075-T6 Aluminum Alloy Plate, 0.250-2.000-in. (Heat-Treated-By-User) | 114 | | 35 | Typical Stress-Strain and Tangent-Modulus Curves for 7079-T651 Aluminum Alloy Plate, 0.250-2.000-in. | 115 | | 36 | Minimum ("A" Value) Stress-Strain and Tangent-
Modulus Curves for 7079-T651 Aluminum Alloy
Plate, 1.501-2.000-in | 116 | ## ILLUSTRATIONS (Cont) | FIGURE | | PAGE | |--------|---|------| | 37 | Typical Stress-Strain and Tangent-Modulus Curves for 7079-T6 Aluminum Alloy Plate, 0.250-2.000-in. (Heat-Treated-By-User) | 117 | | 38 | Typical Stress-Strain and Tangent-Modulus Curves for 7178-T651 Aluminum Alloy Plate, 0.250-1.500-in | 118 | | 39 | Minimum ("A" Value) Stress-Strain and Tangent-
Modulus Curves for 7178-T651 Aluminum Alloy
Plate, 0.500-1.000-in | 119 | | 40 | Typical Stress-Strain and Tangent-Modulus Curves for 7178-T6 Aluminum Alloy Plate, 0.250-1.500-in. (Heat-Treated-By-User) | 120 | #### INTRODUCTION In the tables of design mechanical properties for aluminum alloys in MII-HDBK-5, the "A" values for ultimate tensile stress, tensile yield stress and elongation in one direction are the minimum values required in material specifications and are based on the results of considerable number of inspection tests of commercial lots. From past experience, it can be expected that these values will be met by 99 per cent of the total commercial production. Tests for the tensile properties in other directions and for the compressive, shear and bearing properties are seldom, if ever, made during routine inspection; and it would be impractical to provide an equally large amount of data for establishing individually the values for these other properties. For this reason, the "A" design values for these properties are "derived" values based on a smaller number of tests, as described in Paragraph 3.1.1.1.1 of MIL-HDBK-5. The desirability of stretching heat-treated aluminum alloy products, not only for straightening, but also to reduce residual stresses and warpage during subsequent machining operations, has been recognized in recent years by the establishment of the -TX51 tempers. It is realized, however, that this stretching may have a significant effect on some of the mechanical properties, particularly a reduction of the compressive yield stress in the longitudinal direction. While values for some of the properties not covered by specifications are included in MIL-HDBK-5, it is not certain that all of these values would be the same if they had been established on the statistical basis recommended by the Handbook Reliability Subcommittee of the MIL-HDBK-5 Working Group(1). The work under this contract was done to establish design mechanical properties, including stress-strain and compressive tangent-modulus curves, for 2014, 2024, 7075, 7079 and 7178 aluminum alloy plate in the relatively new -TX51 tempers. The "derived" values were to be computed using minimum-average ratios determined by statistical analyses of the results of the tests to be made. The final results of this work are for use eventually in MIL-HDBK-5. For comparison, similar tests were made of a small number of samples of plate in the "heat-treated-by-user" tempers. Manuscript released by the authors May 1964 for publication as an ML Technical Documentary Report. #### MATERIAL All samples of plate tested were from lots produced on regular orders
for customers, as they became available; no sample was produced especially for this contract. No two samples were from the same production lot. The samples were obtained from three producers. While it was planned originally that not more than two-thirds of the samples would be from a single producer, it was not possible to obtain the desired number of samples and also meet this requirement. Originally, it was planned to procure a sample from each of three to eight lots of 2014, 2024, 7075, 7079 and 7178 aluminum alloy plate in the -TX51 tempers, from each thickness range shown in the tables of design mechanical properties in MIL-HDBK-5, August 1962. The number of samples for each thickness range depended mainly upon the extent of the range. A lesser number of samples of plate also was ordered in the -O or -F temper in most of the thickness ranges, to be heat treated later for tests of the "heat-treated-by-user" tempers. Actually, not all of the desired samples became available, particularly some of those of the larger thicknesses. A total of 129 samples in the -TX51 tempers, and 31 in the -O or -F temper, were received. They were produced between June 1962 and December 1963, with the exception of a few produced as early as June 1960. The four samples of 2024-O and -F were tested in two "heat-treated-by-user" tempers, so that the total number of samples tested in those tempers really was 35 instead of 31. Each sample was 15x20 in., except that those of 2024-0 and 2024-F were 20x30 in. The latter were cut in half so that the pieces later could be heat treated to the -T42 and -T62 tempers, respectively. The thicknesses ranged from 0.250 to 6.000 in. The thickness and identification of each sample are shown in Table I. The heat treatment and stretching conditions used in fabricating the samples of -TX51 plate, as reported by the respective producers, are shown in Table II. The 31 samples that were received in the -O or -F temper were heat treated to the "heat-treated-by-user" tempers using the conditions shown in Table III, which are generally in accordance with MIL-H-6088C. #### PROCEDURE All tests were made using the smallest suitable ranges of an Amsler 20,000-1b (Type 10SZBDA58), an Olsen Electomatic 30,000-1b, or a Southwark-Tate-Emery 50,000-1b Universal Testing Machine. Each of these machines had been calibrated prior to and during the life of this contract. The accuracy always was well within that required by ASTM(2) and Federal specifications, generally being within 0.75 per cent for all loads from 1/10 to full range. In all tests, the range used was such that loads at the ultimate stress and yield stress exceeded 1/10 of that range. Single tests were made except in a few instances where a review of the results indicated that check tests were needed. Tensile, compressive, shear and bearing tests were made using longitudinal and long-transverse specimens from the center of the thickness of each sample, and midway from the surface to the center of the thickness from all samples thicker than 1.500 in. Tests also were made using short-transverse specimens from all plate 2.000 in. or more in thickness. Bearing specimens were taken in the flatwise plane from each sample, and also in the edgewise plane from some samples of plate 1.000 in. or more in thickness. The general dimensions of the specimens are shown in Figs. 1, 2 and 3. The tensile specimens from plate ≈ 0.499 in. thick were full-thickness sheet-type specimens; for plate ≈ 0.500 in. thick, the largest suitable subsize round specimen was used. Generally, the 1/2-in. and 1/4-in. diam tensile specimens were of the tapered-seat type (3), but threaded-end specimens were used in a few tests. The compressive specimens from plate ≈ 0.499 in. thick were full-thickness sheet-type specimens; for plate ≈ 0.500 in. thick, 1/2-in. diam specimens were used. The tensile and compressive tests were conducted in accordance with ASTM Methods E8 and E9(4,5), respectively. Yield stresses were determined from autographic load-strain diagrams at 0.2 per cent offset. The compressive tests were made using a subpress (Fig. 3 of Methods E9), and lateral support in tests of sheet-type specimens was provided by a Montgomery-Templin jig (Fig. 4a of Methods E9). The largest suitable shear specimen (3/16- or 1/4-in. diam) was used for plate ≈ 0.375 in. thick; for plate > 0.375 in. thick, 3/8-in. diam specimens were used. The tests were made using an Amsler double-shear tool in which the specimens were sheared on two planes one inch apart. The diametral clearance between the shear die and specimen was approximately 0.00l in. to 0.002 in. In the tests, the loads were applied in a direction normal to the surface of the plate from which the specimens were taken. The shear stresses determined in tests with loads applied in this direction average about 5 per cent lower than when loads are applied in a direction parallel to the surface of the plate (6). For the different orientations of bearing specimens and thicknesses of plate, the following types of specimens (Fig. 3) were tested: | Orientation | Type of
Specimen | Plate
Thickness, in. | |-------------|---------------------|----------------------------| | Flatwise | F
D | 0.250-0.315
0.373-6.000 | | Edgewise | A,B
D | 1.000-1.280
≥1.500 | As reported previously (7), there is little effect on the values obtained for bearing properties when these different sizes of specimens are used. In the bearing tests, load-deformation curves were recorded autographically and the bearing yield stresses were determined at an offset equal to 2 per cent of the pin diameter. Edge distances of both 1-1/2 and 2 times the pin diameter were used. The test fixture and the specimens were ultrasonically cleaned in acetone before testing(8). Modulus-of-elasticity and stress-strain tests of a selected number of samples were made, both in tension and compression, using longitudinal and long-transverse specimens as shown in Fig. 4. For plate < 0.499 in. thick, full-thickness sheet-type tensile and compressive specimens were used; for plate > 0.750 in. thick, 1/2-in. diam tensile and 3/4-in. diam compressive specimens were used. The procedure in these tests generally was in accordance with ASTM Method Elll-61(9). In each test, two or more cycles of load were applied, the maximum load in the first cycle usually being just above the proportional limit. In the first cycle in each tensile test, strains were measured with an Amsler-Martens mirror-type extensometer over a 6-in gage length (ASTM Class A)(10). In the final cycle, strains were measured with the same instrument over a 2-in. gage length (ASTM Class B-1)(10), the shorter gage length being used in order to reduce the amount of resetting of the extensometer during measurement of the larger strains. In each cycle in the compressive tests, a Tuckerman optical strain gage was used over gage lengths of 1 in. and 2 in. for sheet-type and round specimens, respectively (ASTM Class A)(10). For the determination of each modulus value, the data were examined by the strain-deviation procedure in Method Ell1-61 (9). Based on the results of the stress-strain tests, typical and minimum ("A" value) stress-strain curves of the alloys in the -TX51 tempers, and typical curves for each alloy in the "heat-treated-by-user" tempers, were prepared for various thickness ranges in accordance with Attachment 59-25(a) of the minutes of the 20th meeting of the ANC-5 Panel(11). This method was recommended by the Panel at that meeting. From the typical and minimum compressive stressstrain curves, corresponding compressive tangent-modulus curves were prepared. To do this, parts of the respective stress-strain curves were replotted using suitably expanded or compressed scales. The stresses at various values of tangent-modulus then were determined, from which the tangentmodulus curves were plotted. #### RESULTS OF TESTS Summary tables of the results of individual tests, of ratics among some of those results, of statistical analyses of the ratios among certain properties, and of proposed design values are arranged as indicated in the List of Tables. In the first two groups of tables, the samples are arranged in groups according to the thickness ranges in specifications. Plots of ratios among properties for the samples of different thicknesses of -TX51 tempers are shown in Figs. 5 to 22. The stress-strain and compressive tangent-modulus curves are shown in Figs. 23 to 40. #### DISCUSSION OF RESULTS The specified minimum values for tensile properties of plate of the different alloys and tempers, as now accepted by the industry, are summarized in Table IV. These are as shown in the Aluminum Association's Booklet, "Standards for Aluminum Mill Products," October 1963 (with one exception as noted in the table), and generally as they are expected to appear in ASTM Specification for Aluminum Alloy Sheet and Plate (B209-64). In the cases where values differ from those shown in the government or AMS specifications now in use, it is understood that the necessary revisions and corrections are being made in those specifications. The results of the tests of the individual samples, with the exception of the stress-strain tests, are summarized in Tables V to XI. The tensile properties of each sample exceeded the specified minimum values. Comparison of the properties of samples from the different producers sometimes showed apparent differences. Tests of significance, however, did not indicate definite differences, probably because of the small number of samples from some producers. The ratios among the tensile, compressive and shear properties of the individual samples are shown in Tables XII to XVIII. Similarly, the ratios between bearing properties and tensile properties are shown in Tables XIX to XXV. The average values of the ratios of properties in the longitudinal and long-transverse directions and at
the specification test location in the thickness, for the respective thickness ranges of the different alloys and tempers, are shown in Tables XXVI to XXX. For the artificially aged tempers, the ratios among some of the properties are distinctly different for the -T651 and -T851 tempers than for the -T6 and -T62 tempers, respectively. In the solution heat treated tempers of 2024 (-T351 and -T42), still larger differences occur, as would be expected. For comparison, these tables also contain the corresponding ratios as indicated by the design values in MIL-HDBK-5, August 1962. Again, there are distinct differences when the latter ratios are compared with the ratios from the recent tests of both the stress-relieved stretched (-TX51) tempers and the "heat-treated-by-user" tempers (-TX, -TX2). It should be noted that the higher ratios of bearing properties to tensile properties for the tests made on this contract are at least partly the result of an improved procedure for making bearing tests (8). In order to use the ratio data for the respective alloys and tempers more effectively, a regression analysis of each group of ratios was made to determine whether a significant correlation exists with thickness. In this manner, educates was taken of the data across all thicknesses in arriving at the minimum average ratios used for determining derived design values. Where no correlation exists, a single minimum value of R was selected to apply to all thicknesses. This value is the lower limit of the confidence band around the average ratio of all the data. Where a significant correlation with thickness does exist, values of minimum R for each thickness range were selected that corresponded with the lower limit of the confidence band around the regression line at the mean of each respective thickness range. These analyses were made of the ratios involving results of longitudinal and long-transverse tests of the different samples of the -TX51 temper of each alloy. Similar analyses were made of the ratios involving results of shorttransverse tests of 7075-T651 and 7079-T651 but not of the other alloys and tempers. The distribution of the ratios, and the values for the different terms in the analyses, are shown in Tables XXXI to XXXVI. For the ratios involving tensile ultimate stress and tensile yield stress in the longitudinal and long-transverse directions, there generally is no correlation with thickness; in those ratios involving compressive yield stress, there frequently is a correlation. In the ratios involving tensile and compressive stresses in the short-transverse directions, there are no correlations. the ratios involving shear and bearing stresses, there is no correlation with thickness for the 2000-series alloys, but there generally is for the 7000-series. Since shear and bearing tests had been made using both longitudinal and long-transverse specimens, Student's "t"-test was applied for each alloy to the ratios for each test direction, to determine whether there was a significant difference between average ratios for the two directions. Where none was found, the ratios for the two directions were combined for computations establishing the minimum ratio values that would be used; where there was a significant difference, the ratio values used were those for the direction for which the values were more conservative. The values of ratios for use in computing design values from specified long-transverse tensile properties of the respective thickness ranges of each alloy are summarized in Tables XXXVII to XLII. Design values for ultimate tensile stress, tensile yield stress, compressive yield stress, ultimate shear stress, ultimate bearing stress and bearing yield stress for the -TX51 tempers of each alloy have been summarized as shown in Tables XLIII to XLVII. In these tables, all differences from values shown in corresponding tables in MIL-HDBK-5, August 1962, are indicated and explained by footnotes. In preparing these tables, the values for long-transverse tensile properties shown in Table IV were used as basis-property "A" values. For those alloys and thickness ranges for which "B" values for long-transverse tensile properties are shown in MIL-HDBK-5, August 1962, the same values were used except where a review of Alcoa's recent production data indicated definitely that changes should be made. In some cases where the "A" value had been increased, the "B" value was not changed, because the review would not support a higher "B" value. Wherever sufficient supporting production data were available, corresponding "B" values for other thickness ranges were added. Using these basis-property values and the ratios in Tables XXXVII to XLII, the remaining design values, excepting those in the short-transverse direction, were computed. For 2014-T651, the short-transverse "A" values in MIL-HDBK-5, August 1962, were retained because the number of samples tested in this direction was considered too small to justify statistical determination of minimum-average values for ratios among properties. The short-transverse "B" values were derived using the same spreads between "A" and "B" values as shown for long-transverse tensile properties. For 7075-T651, the short-transverse "A" values were derived using the basis-property long-transverse values and the ratios in Table XL. The short-transverse "B" values were derived using the same procedure as for 2014-T651. It should be noted that the short-transverse values for 7075-T651 in Table XLV are definitely lower than those in MIL-HDBK-5, August 1962. When preparing Table XLVI for design properties of 7079-T651 plate, a conflicting situation was found. Specifications for this material contain requirements for tensile properties not only in the long-transverse directions, but also in the longitudinal and short-transverse directions. These values computed using the ratios in Table XLI, however, are different. Such differences may be explained by the fact that the ratios determined from the tests made on this contract are based on a relatively small number of samples. The longitudinal and short-transverse values in specifications no doubt are based on tests of a larger number of samples. In Tables XLIII to XLVII of design properties, more than half of the values for tensile, compressive and shear properties now shown in MII-HDBK-5, August 1962, have been changed slightly; and the majority of the changes were decreases. The lower values for shear stress may be explained partly by the fact that the loads in the shear tests, in this investigation, were applied normal to the surface of the plate; in previous tests, the direction of loading was not controlled. All of the bearing values were changed, those changes generally being increases, mainly because of the recent improvements in test procedure. For the larger thickness ranges, many new values for the various properties have been added. In some cases, they involved interpolation or extrapolation, where no samples of those thicknesses had been received for testing; however, this was done only when experience indicated this would be reasonably satisfactory. The procedure used in calculating the derived values in the tables of design mechanical properties in this report is in accordance with that recommended by the Handbook Reliability Subcommittee(1). Although not of direct interest in connection with the tables of design mechanical properties in MIL-HDBK-5, some additional observations concerning differences in mechanical properties can be made that are of interest. The properties at center of thickness often were definitely different from those at midway location, the latter being the location at which specification tensile tests are made in plate thicker than 1.500 in. The ratios for each property at center vs midway locations are summarized in Tables XLVIII and XLIX, and some averages of these ratios are shown in Table L. There appeared to be no correlation between any of the ratios and thickness of plate. For the same tempers of 2014 and 2024, the ratios were about the same; and the same was true for 7075 and 7079. For 2024-T351 and -T42, the ratios for ultimate tensile stress, tensile yield stress and compressive yield stress ranged from 1.03 to 1.10, the range being about the same regardless of temper or direction. The ranges were smaller for the artificially aged tempers of 2014 and 2024, the ratios for the longitudinal direction then averaging about 1.00, and in the longtransverse direction averaging about 0.99. For the artificially aged tempers of 7075 and 7079, the ratios for the longitudinal direction average 1.06, and in the longtransverse direction, 1.02. The ultimate shear stress always was lower at the center location. The average ratio, 0.93, was about the same regardless of alloy, temper and direction of specimen. The flatwise bearing properties generally were lower at the center location. For 2024-T351 and -T42, the average ratio was 0.98, the ratios being slightly lower for the smaller than for the larger edge distance. For the artificially aged tempers, regardless of alloy, temper (-TX51 or "heat-treated-by-user"), and edge distance, the ratio was slightly lower, averaging 0.97. Another comparison that can be made is that of bearing properties of plate 1 in. and thicker, when using edgewise vs flatwise specimens. Ratios for each of these properties are shown in Tables LI and LII; the averages are summarized in Table LIII. The average ratios ranged from 1.01 to 0.86. In general, the ratios were about the same regardless of whether longitudinal or long-transverse specimens were tested; and, in the artificially aged tempers, whether the temper was -TX51 or "heat-treated-by-user." The ratios generally were lower, however, for ultimate bearing stress than for bearing yield stress, for 2024-T351 than for 2024-T42, for 2024 in artificially aged tempers than in solution-heat-treated tempers, for 2000-series alloys than for
7000-series alloys (ultimate bearing stress only), and for an edge distance (e/D) of 1.5 than for 2.0. The results of the repeated stress-strain tests are summarized in Table LIV and the average modulus values are shown in Table LV. In the modulus tests, there was a slight difference in average values in the initial and final loading cycles. In tensile loading, the initial value averaged slightly higher (140,000 psi); and in compressive loading, slightly lower (40,000 psi). These differences probably occurred because of residual stresses. The modulus averaged about 100,000 psi higher in the long-transverse than in the longitudinal direction. In 2024, there was no definite difference between the values for the solution-heat-treated and the artificially aged tempers, nor between those for the -TX51 and "heat-treated-by-user" tempers, nor between the alloys within the 2000 or 7000 series. There were definite differences, however, between the average values for the two groups and between those in tension and compression. The modulus values selected for the alloys and types of loading, rounded off to the nearest 100,000 psi, are: | | Modu
ps | ilus,
si | |----------------|--------------------------|--------------------------| | Alloy Series | Tensile | Compressive | | 7:000
7:000 | 10,700,000
10,300,000 | 10,900,000
10,600,000 | Three of these values are higher than the values shown in MIL-HDBK-5, August 1962. These new values are used in Tables XLIII to XLVII, and in the stress-strain and tangent-modulus curves in Figs. 23 to 40. Analysis of the results of the individual stressstrain tests showed that, for a given alloy, temper and direction, there was no trend with thickness in the offsets from the modulus line at stresses expressed in per cent of yield strength in the respective tests. Therefore, knowing the modulus and having the groups of offset values for a stated alloy and temper, longitudinal and long-transverse tensile and compressive stress-strain curves for any alloy and temper can be derived for any desired values of yield stress. Accordingly, typical and minimum ("A" value) curves for the alloys in the -TX51 tempers, and typical curves for the alloys in the "heat-treated-by-user" tempers, have been prepared for various thickness ranges as shown in Figs. 23 to 40. For each typical curve, the long-transverse tensile yield stress was the typical value indicated in Alcoa's production in recent years, and it is assumed that the value for the industry would be about the same. The other yield stresses were computed from this tensile yield stress and the average ratios shown in Tables XXXVIII to XLII. Only typical curves were prepared for the "heat-treated-by-user" tempers, since the tests of these tempers in this report were not considered sufficient to establish minimum values for yield stresses not included in specifications. #### CONCLUSIONS Based on the results of tests of commercially produced plate that met the requirements for tensile properties in current specifications, the following conclusions seem warranted concerning the mechanical properties of 2014, 2024, 7075, 7079 and 7178 plate: - 1. Average ratios of tensile, compressive and shear properties to the long-transverse tensile properties to the are determined in tests required by specifications show that: - a. For the artificially aged tempers, some of the ratios are distinctly different for the -TX51 tempers than for the "heat-treated-by-user" tempers. - b. For the solution-heat-treated tempers of 2024, differences in ratios are larger than those for the artificially aged tempers. - 2. Minimum-average values of ratios for use in computing design mechanical properties of -TX51 tempers of plate are as shown in Tables XXXVII to XLII. These minimum-average ratios are the lower limits of the confidence bands around the average ratios. - 3. For 2014 and 2024 in the -TX51 tempers, these ratios among properties generally are independent of thickness of plate. Exceptions are the ultimate tensile stress of 2014-T651, the yield stresses of 2024-T351 and the compressive yield stresses of 2024-T851. - 4. For 7075, 7079 and 7178 in the -TX51 tempers, some of the ratios among properties vary with thickness of plate. These ratios always include ultimate shear stress and bearing yield stress; they sometimes include tensile and compressive yield stresses and ultimate bearing stress; they never include ultimate tensile stress. - 5. For each of the alloys in the -TX51 tempers, between the longitudinal and long-transverse directions, there is no definite difference in the ratios for ultimate shear stress to the long-transverse tensile stresses. The same is true for the ratios involving bearing stresses, with the exception of the ultimate bearing stress of 2024-T351. - 6. For plate thicker than 1.500 in., the relations between the mechanical properties at the center of the thickness to those midway from the center to the surface (the location for specification tests) indicate that: - a. For the respective alloys and tempers, there is no correlation with thickness. - b. For the same tempers of 2014 and 2024, the percentage differences are about the same; this also is true for 7075 and 7079. - c. For 2024-T351 and -T42, the ultimate tensile stress, tensile yield stress and compressive yield stress range from 3 to 10 per cent higher at the center, regardless of temper or direction (longitudinal or longtransverse). - d. For the artificially aged tempers of 2014 and 2024, these properties are about the same at the two locations, regardless of temper or direction. - e. For the artificially aged tempers of 7075 and 7079, these properties in the longitudinal direction average 6 per cent higher at the center; in the long-transverse direction, 2 per cent higher. - f. The ultimate shear stress is 7 per cent lower at the center, regardless of alloy, temper and direction of specimen. - g. The flatwise bearing stresses generally average 2 to 3 per cent lower at the center, regardless of alloy, temper and edge distance. - 7. For plate 1 in. and thicker, the bearing stresses generally average from 0 to 14 per cent lower under edgewise than under flatwise loading. The relations are: - a. The percentage differences are about the same whether loading is in the longitudinal or long-transverse direction and, in the artificially aged tempers, whether the temper is -TX51 or "heat-treated-by-user." - b. The differences are larger for ultimate bearing stress than for bearing yield stress, for 2024-T351 than for 2024-T42, for artificially aged tempers of 2024 than for solution-heat-treated tempers, for 2000-series than for 7000-series alloys (ultimate stress only), and for an edge distance of 1.5D than for 2.0D. - 8. The modulus of elasticity of each alloy is 2 or 3 per cent higher in compression than in tension. The values are about the same regardless of direction of loading (longitudinal or longtransverse), temper and alloy within the respective series (2000 and 7000). - 9. Design values for modulus of elasticity are: | | Modi
ps | ılus, | |--------------|------------|--------------------------| | Alloy Series | Tensile | Compressive | | 2000
7000 | 10,700,000 | 10,900,000
10,600,000 | - 10. Design mechanical properties for the -TX51 tempers of plate as currently produced are as shown in Tables XLIII to XLVII. - 11. Typical and minimum ("A" value) stress-strain and compressive tangent-modulus curves for plate as currently produced are as shown in Figs. 23 to 40. ### RECOMMENDATIONS It is recommended that the tables of design mechanical properties in Tables XLIII to XLVII, and the stress-strain and compressive tangent-modulus curves in Figs. 23 to 40, be used in the next revision of MIL-HDBK-5. #### REFERENCES - Paragraph 1.4.1.3 of Attachment 59-29 mentioned in minutes of 23rd meeting of MIL-HDBK-5 Working Group, May 1962. - 2. "Methods of Verification of Testing Machines, E4-61T," ASTM Book of Standards, 1961, Part 3. - 3. H. A. Traenkmer and C. F. Babilon, "A New Tension Test Specimen for Accuracy and Economy," to be presented at ASTM Annual Meeting, June 1964. - 4. "Methods of Tension Testing of Metallic Materials, E8-61T," ASTM Book of Standards, 1961, Part 3. - 5. "Methods of Compression Testing of Metallic Materials, E9-61," ASTM Book of Standards, 1961, Part 3. - 6. R. E. Davies and J. G. Kaufman, "Effects of Test Method and Specimen Orientation on Shear Strengths of Aluminum Alloys," to be presented at ASIM Annual Meeting, June 1964. - 7. R. L. Moore and C. Wescoat, "Bearing Strengths of Some Wrought Aluminum Alloys," NACA Technical Note No. 901, August 1943. - 8. A. A. Moore and G. W. Stickley, "Effects of Lubrication and Pin Surface on Bearing Strengths of Aluminum and Magnesium Alloys," Materials, Research and Standards, Vol. 2, No. 9, September 1962. - 9. "Methods for Determination of Young's Modulus at Room Temperature, Elll-61," ASTM Book of Standards, 1961, Part 3. - 10. "Method of Verification and Classification of Extensometers, E83-57T," ASTM Book of Standards, 1961, Part 3. - 11. R. L. Templin, E. C. Hartmann and D. A. Paul, "Typical Tensile and Compressive Stress-Strain Curves for Aluminum Alloy 24S-T, Alclad 24S-T, 24S-RT, and Alclad 24S-RT Products," Alcoa Research Laboratories Technical Paper No. 6, 1942. TABLE I | ARL
Semple
Rumber | \$ \$\frac{1}{2}\$ \frac{1}{2}\$ \f | | |---------------------------
---|--| | 7178
Thickness, | 0 00 000000000000000000000000000000000 | | | Temper | 0 4 4 | | | ARL,
Semple
Musber | 444 6444444444444444444444444444444444 | | | 7079
Thickness, | 0.1.4 <td< td=""><td></td></td<> | | | Temper | -1651
-1651 | | | ART.
Sample
Number | ම රුවන් ප්රදේශය ද්යාද්ය දේශය දේශය දේශය දේශය දේශය දේශය දේශය දේශ | | | 7075
Thickness, | 01444 00044 <td< td=""><td></td></td<> | | | Temper | 0- 4- 1- | | | ARL
Sample
Number | ###################################### | | | 2024
Thi chass,
in. | อน อน ออออออออออออออออออออออออออออออออ | | | Tound | 0- 4- E- | | | ARL,
Sample
Number | ASS & SECULORISE SECULORISE SECULORISE & ASS & SECULORISE SECURITARISE SECULORISE SECULORISE SECULORISE SECULORISE SECULORISE SECURITARISE SECULORISE SECULORISE SECULORISE SECURITARISE SECULORISE SECURITARISE | | | 2014
Thickness,
In. | 944 9 999999994499998888899
898 8 8888888888 | | | Tempor | | | 18 TABLE II HEAT TREATMENT AND STRETCHING CONDITIONS FOR STRESS-RELIEVED STRETCHED PLATE | Alloy
and
Temper | Producer | Thickness, | Solution Heat Treatment* Temperature Range, °F | Stretch,
Per Cent | Precipitation Heat Treatment* Temperature Range, °F | |------------------------|-------------|---|--|-------------------------------|---| | 2014-1651 | A
B
C | 0.250-2.500
2.000-2.250
0.312 | 925-945
925-945
925-945 | 1-1/2 to 3
2
1-1/2 to 3 | 315-340
330-350
315-340 | | 2024 - T351 | A
B | 0.250-3.000
0.250-2.000 | 910-930
910-930 | 1-1/2 to 3 | atr eta esp
esp eta pep | | 2024-1851 | A
B | 0.250-2.515
0.440-0.805 | 910-930
910-930 | 1-1/2 to 3 | 365-385
365-385 | | 7075-T651 | A
B
B | 0.314-3.953
0.375-0.501
0.875-2.250 | 880-900
880-900
880-900 | 1-1/2 to 3
2
2 | 240-260
200-220; 290-310†
240-260 | | 7079-11651 | . А
В | 0.252-6.000
0.625-3.000 | 830-875
850-875 | 1-1/2 to 3 | 190-210; 240-260†
230-250 | | 7178-4651 | A
B
C | 0.250-1.250
0.312-1.000
0.435-0.520 | 860-880
860-880
860-880 | 1-1/2 to 3
2
1-1/2 to 3 | 240-260
240-260
240-260 | ^{*} Soak times are dependent on thickness but are those that are sufficient to put the heat-treat phase in solution; or, in the case of aging, to achieve required properties. The temperatures shown are generally within recommended industry standards and within the ranges in MIL-H-6088C. [†] Two-step aging treatment. TABLE III HEAT TREATMENTS OF -O OR -F PLATE TO OBTAIN "HEAT-TREATED-BY-USER" TEMPERS | | Solution
Heat Treatment | Precip
Heat Tr | Final | | | | | |-------|----------------------------|---------------------|--------------|-----------------------|--|--|--| | Alloy | Temperature, † | Time‡ | Temperature, | Temper
Designation | | | | | 2014 | 935 | 8 hr | 350 | - T6 | | | | | 2024 | 920
920 | 10 hr | -
375 | -T42
-T62 | | | | | 7075 | 890 | 24 hr | 250 | - T6 | | | | | 7079 | 830 | 5 days RT;
48 hr | 240 | -1 6 | | | | | 7178 | 875 | 24 hr | 250 | - 76 | | | | [†] Soaking time was one hour for thickness ₹ 0.500 in. For each additional 1/2 in. of thickness, 1/2 hr was added. [‡] Time shown was soaking period for thickness = 0.500 in. Except for 7075 and 7178, 1/2 hr was added for each additional 1/2 in. of thickness. For 7075 and 7178, 24 hr was used for thicknesses = 1.500 in.; 35 hr for 1.501-2.000 in.; and 48 hr for ≥ 2.001 in. TARCE IV SPECIFIED HOHOHON VAIORS* POR ADDHOMM ALLOY PLADE | | | * | Tenation | | Elengati | g | | | | Tensile | | Liengatien | | | |-------------------|--|------------|---|-------------------|------------|---------------------------------------|------------------|--|-------|---------------------------------------|-----------------------|------------|---------------------------------------|--| | Alley | Thickness, | Dare | Ultimate
Stress, | Head Stress, t | %
143√ | Gevernment
or ANS
Specification | Paris C | This oldness, | parec | Ultimate
Stream,
yea | Stress, | i Å Å | Government
ar ANS
Specification | | | 2011-76,
-T651 | 0.250-0.199 | Ì | 88
88 | 88
88
88 | 740 | | 7079-16, | 0.230-1.000 | 22 | 888 | 888 | ωω: | | | | | 1.501-1.50 | ##! | | 888
122 | * W. |
#20# SM | | 2.801-2.500
2.801-2.500
2.801-2.500 | 444 | 388
388 | 388
888 | ممد | | | | | 3.001-3.000 | | | | JA. | Mance | | 3.0017.000 | la# | 122
888
888 | 388
888
888 | , g.v. | | | | 3024-T351 | 0.50-1.00 | | 488
888
888 | 888
844 | مسر
مصد | 00.4.756] | - | \$.001-4.500 | ដែរដ | | %&&
\$88
\$\$8 | 2 5 7 7 | į | | | | 1444
1666
1444
1688 | 1555 | 488%
888
888
888 | 443
888
888 | JUMM | Maco | أرادات والمساواة | 4.501-5.000 | ង្គមា | ###
8888
8888 | | 2000 | ** 100-W-TT | | | -145 | 0.255-0.199 | | \$6
600
11
10
10
10
10
10
10
10
10
10
10
10
1 | | CH CH | | | 5.001-5.500 | ka# | | ##
888
144 | | | | | | 11.00.1
10.00.1
11.00.0
10.00.0
10.00.0 | | 888
888
888 | 888
KRRR | 104 | | | 5.501-6.000 | ដកដ | 8888
8888
8888 | ###
\$888
\$888 | . i. i | | | | -162 | 0.500-3.000 | おお | 88
86 | 88
88 | N/N | Q4-4-3250-1 | 72.78.76, | 664.0-025.0 | ## ## | 3 88
3 88 | | , ev | • | | | ය ර්ත- | 0.500-1-000
1.500-1-000
1.500-1-000
1.500-1-500 | 11 異日 | 88
88
11 | 88
11 | الس | e e e e e e e e e e e e e e e e e e e | 1 | 1.501-1.500 | 語語 | 888
888 | 388
388 | >4 N | MI-A-9180A-1 | | | 7075-76,
-7651 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | 8888
7444 | 8888
8888 | @0#r | 1 - 12 - 13 | | | | | | | | | | | 2.00
2.00
2.00
2.00
2.00
2.00
3.00
3.00 | | | | mw
J | Matte | | | | | | | | | | Booklet. | Except as noted, all values are as shown in the Alusium
Booklet. "Sandards for Alusium Mill Products." Octobe | luce are | X 11. Probic | the Alect | 1 E A | Association's 1963. | 1 Offset equals | aks 0.2 per cent.
In Standards for | ١ | Alumdum Mill Products," October 1963. | nets, Orto | ber 19 | 53. | | | respective | respective appointentions and these expected to be in | da bas ac | see expecte | d to be in | NEST. | * 1 | 8 | in specific | | rt oelton. | ` | | | | | Specifical | tion keys-or-
udinal: if. ie | of trensve | in thensares If there thensare | ment thense | | = | | the section of se | H | outloation B209-64 | نیم | | | | TABLE V STREETHES OF STRESS-RELIEVED STREETGED 2014-T651 FLATE | | | Yield Stress, § | 0/2-5.0 | 11 | 11 | 11 | | 11 | 11 | 11 | 11 | 11 | 100
100
100
100
100
100
100
100
100
100 | 25.
25.
25.
25.
25.
25.
25.
25.
25.
25. | | 38
33
33 | | 32
32
1 | 98
1
1
1
1
1
1 | 31 | 88
47
77 | İ | | 11 | 111 | 111 | 111 | HH 88 | | |----------|-----------|---|----------------|--------------------------------|-----------------|--|--|---------------------------------|---------|--------|--|--------|---|--|---------------------|---|-------------------|---------------------------------------|----------------------------------|----------|-------------------|----------|--|--|--------------|---|--|---|---| | | 11 | Yield St | 6/2-1.5 | | | 1 1 | | 11 | 11 | 11 | | 11 | 88
88 | 88
88 | 88
88
88 | 88
88 | 11: | : : | 88 | <u>}</u> | 97 100
T | | 11 | 11 | | 11 | 111 | 18
18
18 | | | | ectvego i | Stress, | e/2×2.0 | 11 | 11 | | | 11 | | 11 | | 11 | 123 700 | 88
88
88 | 88
53 | 127
126
128
128
128 | 11 | 36
821
828
138
138
138 | 124 98 | 31 | 88
88
88 | 1 | 11 | 11 | | | 111 | 1 21
1 81
88
88 | | | BEARING | | Ultimete | e/0-1.5 | 11 | | 1 | 111 | | 11 | 11 | | 11 | 88
88 | 101
800
800
800
800 | \$8
\$3
\$3 | 88
88 | 11 | 38
38
1 | 188 | 3
8 1 | 188
188 | | 11 | | | 11 | 111 | 2.2
2.2
2.3 | | | BEA | | ress, \$ | e/D-2.0 | | | | 255
258 | 901
905
501
900
900 | | | | | | 28
44
44 | | | 38 | | 1111
888
888 | 38 | 888
282
282 | 1 | 22
22
28
28 | 111
283
283 | 116 6005 | :
28
27
27
27
27
27
27
27
27
27
27
27
27
27 | 183
88
88 | 188
188
1 | | | | ı | Yield Stress, \$ | 3/0-1.5 | | | | 222
222
222
222
222
222
222
222
222
22 | | | _ | | | පුසු
සස | 88
88 | | | | | | - | 888
888
888 | 1 | 202
203
203
203
203 | 88
88 | 100 0005 | 88
88
88 | 155
155
88
88
88
88 | 88
88 | | | | Platvise | Stress, | e/D-2.0 | | | | 300
171
172
182
183
183
183
183
183
183
183
183
183
183 | 141
300
141 | | | | | 88
22 | 146
800
500
500 | | | | | | | 888
888
888 | | 44.
88.
80.
80.
80. | 25
25
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | 143 tooss | :
188
183 | 1.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00 |
16.65
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85 | | | | | Ultimate | 975-1.5 | | | | 888
1211 | | | | 15.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5 | | 106
104
104
106
106
106
106
106
106
106
106
106
106 | 511
800
800
800
800 | | 889
1845
1845
1845
1845
1845
1845
1845
1845 | | | | | 888
484 | | 411
821
831 | 109
109
000
000
000 | 17. | ;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
; | 111 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | | SHEAR | | Ultimate | 24.753,
pst | ##
200
200
200
200 | 25.
88. |) 12-13-13-13-13-13-13-13-13-13-13-13-13-13- | 888
242 | | | | 38
38
38 | | 88
23 | 88
84
44 | 25.25
888
888 | 38
28 | \$2
\$2
\$2 | 888
RR: | 8
8
12 8
12 8 | 88
88 | 888
882
882 | 1 | 200
200
200
200
200
200
200
200
200
200 | 83
84
82 | 88 | ***
\$88 | 200 CA | 1 88
1 88 | | | SOM. | <u>Ļ</u> | | ps1 | | | | 40%
838 | | | | | | 88
83 | | | 88
88 | | | | | <i>\$</i> 88 | | | | | | | <i>888</i>
888 | | | | 2100012 | 13 2 15 15 15 15 15 15 15 15 15 15 15 15 15 | 4 to 4 | us
os | น
ผู้
ผู้ | 300 | odi
ovo | 7:11 | NO. | in: |) - -
 - - -
 - - - - | က်ဝ | ος
Ga | 10
20 | Д° | က်
ကိုဝဲ | 00 | ထုထ <i>်</i>
ဝီကို | ခဲ့ရှိ
ရှိရှိတဲ့ | တ္ဝင္ | t-Q.t.
လိဝ်လ | , o | တစ် | කල ₍ | นูญ
อำนัก | ပုအလ
ပုဂ်လ် | 400 | w.r.u | | | WENGY 12 | | Yaeld | ped
ped | | | | <i>868</i>
\$8\$ | | | | | | 188
188 | | | 48
88 | | | | | 388
388 | - | | | | | | <i>RON</i>
3 | | | | | | Scross, | | | | 888
888
888 | | | | | | 888
888 | | | 122
88
88 | | | - | | 888
828 | | | | | | | 558
888 | • | | | | | 28 | 4 5 | 1.75 | L | 라니티 | ٦ <u>٢</u> | 1,1,5 | in: | in: | in. | ile! | n. | i,at | 티리 | អដ | 나타 | 니티니 | ដ្ឋា | HAR | is | J.E | laäl | h! | i,i | มี
เม | ដែង | | | | | | 25
28
28 | O | ပ | ن
* | O | O | ບ | ပ | ပ | ပ | ပ | υ | ပ | O | × | U ; | x; () | × | | | × | ပ | × | ပ | × | ပ | | | | 9 | TOTHING - | Producer | 252458 | 261401 | 30172411 | 281485 | 251757 | 567 tg2 | 301855 | 301691 | 231518 | 251739 | 297.398 | 281553 | 13.00 | 301652 | i i | 281430 | 2816563 | | | 281580 | | 25165544 | | स्य ५५ | | | | | ś | Talek- | 12,
12, | 0.350 | 0.312 | 0.312 | 0.314 | 0.58 | 0.500 | 0.500 | 0.642 | 0.756 | 2.00 | 1.001 | 1.125 | 1.58 | 1.501 | ě | 169.1 | 2.000 | | | 2.001 | | 2.250 | | 2.500 | | | * C. conter of tildConess; M. midwey between center and surface of plate. ** From Froducer E for Goden C of the Archiver C of the Alamster. \$ Offices equals 2 per cent of the Alamster. \$ In Interstudinal; II, long transverse; SI; short transverse. ** Specians and it failed before reaching 2 per cent offset. of plate. ** From Producer B. All others from Producer A. ** From Producer C. \$\foatie{\lambda}\) Average of two tests; all others, single tests. *** Specimens and fixtures cleaned ultrasonically in acotone. -- SOURCE ON RECE PARS. TABLE VI MECHANICAL PROFINITES OF STRESS-RELIEVED STRETCHED 2024-1751 PLATE | | cress, | 3.147/9 | I | i | } | i | } | 1 | i | i | | | i | ļ | i | ! | 1 | 1 | į | ì | ļ | 1 | ł | , | ; | 1 | 1 1 | | ł | i | 1 | j | 1 | ì | 8 8 | 33
33
34 | 8 | 58
58 | (8 g | |---------|-----------------|----------------|--------|-------|---|-----|--------|---|----------|----------|--------------|------------|------|--------|---|----------|---------|------|------------|---------|----|-------------|------|--------|-------|--------|-----------|---------------|---|------|----------|-------------|--------|---|----------------|----------------|-----------|----------------|--| | | Yield Stress, | e/0-1.5 | } | 1 | i | 1 | į | ١ | į | į | | \ i | ļ | 1 | 1 | | į | ļ | | į | i | • | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | ļ | 1 | 1 | | | | | | | | | Stress, | e/5×.0 | } | 1 | } | 1 | ł | I | } | ł | | 1 | 1 | 1 | 1 | 1 | 1 | ļ | | 1 | 1 | 1 | 1 | į | ì | 1 | } | | 1 | ł | 1 | } | i | j | 85
85
85 | 138 | 123 50 | 88
88
88 | 61
88 | | E-PRING | Ultimate | e/D=1.5 | ١ | 1 | | 1 | 1 | | 1 | 1 | | | 1 | 1 | ! | i | 1 | | | 1 | | - | 1 | | 1 | | | | 1 | 1 | 1 |
 | 1 | 1 | 88
88 | 200 | 8.
13. | \$8
88 | (2)
(3)
(4)
(5) | | Regi | 2,5602 | 0.5-0/0 | | - | | | | | | | 38
38 | | | | | | | | | | - | | _ | | | - | - | | 8
8
8 | | | | | | | | | | 18/8
18/8 | | | Yield Stress, 5 | e/15-1.5 | | | | | | | | | 32 | | | | | | | | | | | | | | | | | | 135
250
250
250
250
250
250
250
250
250
25 | | | - | _ | - | | | | | 38.5
88.5 | | Ĕ | Stress, | 575-C.C | 1 | | _ | | | | | | 35 | | | | | | - | | | | | | | | | | | | 124 78 | | | | | - | | - | - | | 185
185
185
185
185
185
185
185
185
185 | | | Ultimate Stress | ./O-1.5 | | | | | | | | | 38 | | | | | | | | | | | | | | | | | | 102 | - | | | | | - | | | | | | SIEAR | V) timate | Stross,
p.1 | 23 600 | SS 24 | \$ 50
80
80
80
80
80
80
80
80
80
80
80
80
80 | | | | | | 35 | - | _ | - | | | | | | | | | | | | | | | 12 | | | | | | | | | | 138
138
138
138
138
138
138
138
138
138 | | Ω.F. | | Stross, s | • | | | | - | | | | | | | | | | 25 700 | - | | | | | | | - | - | - | | 39
34
44 | | | | - | | | | - | • | 188
1# 9 | | | 8 5 | tor the | i | 100 | 8 | 361 | 33.6 | 3 | ง:
ส: | ٥.
ج: | بر
م
م | 26 | | 13.7 | 3 | 8 | 2.5 | { | ; <u>,</u> | 10.01 | 10 | ខ្ម | 17.0 | 8 | 30.00 | i, | ٥.
دور | ٠
١٠
١٠ | | 27.0 | 13.5 | 3.5 | 18.5 | 1 | 20, | ٠.
م.
د | 100 | 20.0 | 44.
50.
50. | | THEFT | Yfeld | Strota | { | | | | | | | | ¥; | | | | | | 149 700 | | | | | | | | | | | | 16
16
16
16
16
16
16
16
16
16
16
16
16
1 | | - | 8
% | | | | | | | 17.
28.
28. | | | 171 + 3 20 50 | Strings, | 3 | | | | | | | | | | | - | | - | 22.00 | | | | | | | | | - | | | _ | _ | - | 2
2
2 | - | | | | | | 386
386 | | | <u>.</u> | 25 | - | ı.E | h | ä | -1 | ន | J | Ħ, | ٦; | ä, | 3 5 | 1.: | Ē | ندا | ង | , | 3.5 | 1. | Ę. | , ,; | ä | د, | ដ | | Ħ, | J. | 1. | ä | H | Ħ | -1 | H | اد. | <u>.</u> | រដ | ,a. | in: | | | | Look No- | د | , | ပ | , | ပ | | ပ | , | ບ | c | , | U | • | c | , | • | • | د | • | U | ı | ပ | | ပ | • | 9 | ۲ | • | ပ | | v | ı | ပ | C | , | ပ | O | | | Sample States | ٠. | АУПСЭС | | 2815061 | | 201837 | | 301838 | 1 | 2012/4 | OKBLOK | Sec. | 281775 | | 28166111 | | 0.75 | 8 | 283 370 | 1 | 28165911 | • | 231489 | |
261403 | 40.00 | 505702 | 28366411 | | 28150811 | • | 281379 | | 291497 | 24151011 | ******** | 28:273 | 231697 | | | San San | 1008 | 98 | } | 0.350 | | 50.0 | | 8 | | 0.312 | | | 0.375 | | 0,4,0 | | 2 | 3 | 105.0 | 2 | 505.0 | | 0.567 | | 5.73 | | 2 | p. Ros | | 80.7 | | 1.001 | | 1.009 | 310 | CT0-+ | 7.38
88.11 | 1.500 | TAME VI(CONCIDED) MEGINICAL PROPRICTES OF STRESS-RELIEVED STRETCHED 2024-1751 PLATE | | | · • | 5.0 | 188 | 8,,, | 88, | 1881 | 1111 | 11111 | 11881 | [⁸⁸] | 11881 | 1881 | tope. | |---------|-------------|-----------------|------------|---|---|--|--|--|--|---
--|---|---|---| | | | le Stress, S | 6/2
e/0 | V., | • | VIO | 0.01 | | | 0.01 | 0.0. | 0.07 | | in the second | | | eviss | Yiel | E/AF | 115 | 8
 | 55
88 | 1125 | | | 199 | 1 92 52 | 1184 | 11451 | Schera fr | | | - 1 | Stress, | 0.2c/e | 115 | Ř | 111
38 | 11.5 | 1111 | | | 32
 133
 133 | 11,800 | 112 200 | Jeans duter | | TWO | | Ultimate
psi | 6/0-1.5 | 118 | *
 | 834
834
834 | 1 1 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1111 | 11111 | _{\$\$} | & &
 & & | 1188 | 188
 188
 188
 188
 188 | from Product | | EVE | | tress, \$ | e/0-2.0 | 8888
8888 | 8 188
8 188 | 83
88 | 8888
8888
1 | 2388
3388 | 8838
82228 | 2883
2883
2883 | 4288
8835 | 2888
2888 | 8328
8888 | othens and | | | vise | Yield S | 0/041.5 | 2887
2000
2000
2000 | E 167 | 76 100 | 8888
8888 | 8888
8888 | 3255
5355
5355
5355
5355
5355
5355
5355 | 8828
8828
88288 | 2888
8488 | 8588
8588
8588 | 14884
14888
18888 | zanc de para | | | Flat | Stress, | 0.2-0/0 | 255
255
255
255
255
255
255
255
255
255 | 25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1.25.
1. | 55
55
55
55
55
55
55
55
55
55
55
55
55 | 989
155
155
155
155
155
155
155
155
155
15 | 8383
8383 | 18588
18888
18888 | 2888
3888
3888 | 2888
2888
2888
2888
2888
2888
2888
288 | 2888
2888
3888 | 8388
14848
1 | transverse | | | | Ultimate | 6/1-1.5 | 106
106
106
100
100
100
100 | 102 80
104
205
206
206
206 | 188
188
188
188 | 400
400
100
100
100
100
100
100
100
100 | \$888
\$888
\$688
\$688
\$688
\$688
\$688
\$688 | 8888
88888
88888 | 2000
2000
2000
2000
2000
2000
2000
200 | 8888
8888 | 2555
2555
2555
2555
2555
2555
2555
255 | 85388
 8388
 8388 | or, sur age | | SEE:R | | Uttiente | psi, | 888
888 | 8, ₂₂ | ****
*88 | 33484
 8888
 | \$238
\$885 | 8888
8888 | 8888
7875 | 3888
777 | 3358
8858 | 44223
38888
88888 | piete. | | Serie. | | 7101d | pst
pst | CON | or or Curi | 200 | 12442
185888
1868 | fische of and | 0-15-W2 | ********
88888 | | 40.00 | 338828
338825 | LF JONE | | | Temperation | 12 cm | or se | 17.
186.5
18.0 | ရှိတည်း
ဂါဝီလိုင | igi. | ಷ್ಟಟ್ಟಳ್ಳ
ಶ್ರೇಸ್ಕರ್
ಶ್ರೇಸ್ಕರ್ | | | HHHH
Sovorie | | | 44400v | 56 | | TENSILE | , | Yield | pst pst |
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55 | 3888
3888 | 1888
1888 | }%#%=#
888688 | | | | | | 4 <i>U</i> t.V±
588838 | 10 | | | | Ultimate | Strons, | _ | - | | 88888
1878 | | | | | | 888888
133&8 | aldered. | | | | | - E | ㅋ指ㅋ | Ebai | 3.458 | 8244B | ลล็ลล็ | สะสะส | :
 בור בור בו | | สะสะส | สยาสะเ | in con | | | | | tion tion. | x 0 | × | ပ | x o | χo | z o | x o | x o | x o | x o | high
0.2 p | | | almin. | Manbor | Preducer | 301845 | 201819 | | 2918444 | 281581 | 261598 | 301782 | 281749 | 201848 | 301846 | C, conter of thickness; H, Offert equals 0.2 per cent | | | ð. | "STCK- | noss, | 1.930 | 2.000 | | 2.000 | 2.001 | 2.250 | 3.25 | 2.515 | 2.800 | 2.00 | . Offe | REGINICAL PROPERTIES OF STREED-RELIEVED STREEGED 2004-1551 PLAIS TABLE VII | | | : | | | | | | 1 | | |--------------|---------|---|---|---|--|--|--|---|---| | | | Yield Stress, 5
psi
D-1.5 e/D-2.0 | 1111111111 | 111111111111111111111111111111111111111 | 119111111111111111111111111111111111111 | 111111111 | 1198 | 112 300
110 300
1 700 | | | | drevise | Xe1d : | 11111111111 | 111111111111111111111111111111111111111 | 11===================================== | 1111111111 | == | | į | | | 1=2 | Stress,
e/5-2.0 | 1111111111 | 111111111111111111111111111111111111111 | | 1111111111 | 11881 | 120 400
120 900
140 140 140 140 140 140 140 140 140 140 | fmet.
Ancer A.
nomically in acetors | | E-ANDIGO *** | | Cltimate
psi
e/D-1.5 | 1111111111 | | &\$\\\
 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | ###
 ### | | nt offmet.
Producer,
ultresonice. | | ਸ਼ਨ ਸ | | tress,; | i e | \$25888852888528
\$166666666668866 | 4244944
8888888
8888888 | 8888
8888
8888 | 2888
1 | | og 2 per og
Glers fro
8s cleaned | | | | Vield Stress, ped ped / ped | 3583333388
35833333888 | ¹ ප්ඩිධි <i>෪෭ෳෳ෭ෳ෦෫෭෧</i> ෫ඁඁඁඁ
දිනිදිදිනිප්පිදිදීනීතීද්ධිදිලි | 848354333
8883443333 | 2352 FERR
2352 E883 | . XXXX. | 488888 H | fore reaching the sell and fixture | | | | otress, | 232223222
23528338528
23528338528 | 435465354455655
38888554586555 | ###################################### | 2828 2588
2828 2588 | 57555
8838
8838 | 135 788
133 168
133 168
113 188
113 188
113 188
113 188
113 188
188
188
188
188
188
188
188
188
188 | Priled ber
From Productions | | | | Ultimate, | 2425444444
2425453883 | 3444422442253
54327523323238
5432752332338
5 | %%%%%
%%%%
%%%
%
%
%
%
%
%
%
%
%
%
%
% | 3355 5558
8355 8853 | 255 456
255 456
255 255
255 255 | 2555
2555
2555
2555
2555
2555
2555
255 | F# | | SHEAR | | Stress, | 3×2×38×2×2×
3×2×3×2×2×2×2×2×2×2×2×2×2×2×2×2×2× | 37583858535888
37583858535888 | 38388888
88388888 | 8888 <u>8888</u> 8 | 3888
1 | \$ \$228
1 \$2288
1 \$2288 | | | ₩.₽. | ~~~ | Xtela
Stress, t | ************************************** | ###################################### | <i>\$\$</i> \$\$\$\$\$\$
\$\$\$\$\$\$\$\$ | %%%&&&&&&&
&\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 88888 | | | | | Elonerron
In Cim. | တူးရေး အသူနေရှိ ဖ
ပျားရောက်လည်း | တို့သူတွင်သူကို ကိုင်ဆီမှာနှင့်
ကောင်းသူကို ကိုင်ဆီမှာနင့် | တိုင်း (မောက် ကိုစ်
သူတို့လူသည် ကိုစ် | က်ကိုနှစ်ချီလိုတ်စုံစိုင်
ပက္ကသူသို့ အလိုလ်ပုံစိုင် | , | よった。
たった。
たった。
たった。
と
なった。
と
を
を
と
を
と
を
を
を
を
を
を
を
を
を
を
を
を
を | | | TENSILE | | Yield
Strees, | 00000000000 | \$ | \$4888358
\$4888358 | 838588888
888888888 | | 38338
38338
38338 | ot/2: | | | | Untimate
Stream, | \$&\$&\$\$\$\$\$\$\$
\$\$\$\$\$\$\$\$\$\$\$ | 44444444444444444444444444444444444444 | \$\$\$\$\$\$\$\$
\$\$\$\$\$\$\$\$ | 888888888
8888888447 | | 15.000 B | pin diameter | | | | Z Z Z | 로드립드로드로드 | 그렇고법교법교법교법교법교 | ลลิลลิลลิล | 리뉴본드정본스본드 | 144B | ALLIES SELLES | out o | | | | DA- POC- | 00000 | 0000000 | 0 0 0 0 | x 0 x 0 | × o | x 0 10 10 10 10 10 10 10 | s 2 per cent of 1 | | | 46 | Tedent
Program | 250464A
031400
031601
0316001 | 201754
2016671
201368
201400
201400
201367
2016981 | 231776
281511
221412
2316974 | 241590
241602 | 501783 | (in jo doni | Cfrot oquals Officet oquals 2 | | - | ë | Thick- | | 0.500
0.500
0.501
0.567
0.730
0.730
0.865 | 1.001 | 2.83 | 8.35 | 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | \$ 00000
\$ 00000
\$ 00000 | TABE VIII MECINICAL PROPERTIES OF STRESS-PELLEVED STRETCHED 7075-1651 PLATE | | | | , |----------|----------|---|-----------------|--------|------------|-----------|-----|---------|-------|--------|---|--|-------|--------|---|---------|----------|------------|----------|---|----------|-----|--|---------|--|---|--|---------|---|--|-------------|--|--|-----|--|---|----------------------| | | | Xield Streas, § | e/D-2.0 | ì | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 1 | 1 | 1 | ł | } | 1 | 1 | 1. | | 1 | 220 800 | 38.
38. | 86
86
86
86
86
86
86
86
86
86
86
86
86
8 | 8 | 8 | 1 | 288
888
888 | ļ | | 88
88 | 1 | 11 | 120
25
25
25
25
25
26
26
26
26
26
26
26
26
26
26
26
26
26 | 3 | | | | Yield St | 0/2-1.5 | j | } | 1 | l | 1 | I | 1 | i | | | | 1 | ì | 1 | 1 | j | ļ | | | 1 | 300 | 38 | 700 | 011 | 83 88 | 1 |
88
88
85
85 | j | 1 | 8,8
4,5
4,5 | 1 | | 8
8
8
8 | 2 | | | Ecpenise | Stress, | e/p-8.0 | į | 1 | 1 | 1 | 1 | 1 | ļ | 1 | 11 | | 1 | | 1 | 1 | 1 | 1 | l | 1 | ! ! | 1 | 600 | 72
72
72
73
73
73
73
73
73
73
73
73
73
73
73
73 | 25,52 | 155 | 152 800 | | 12.5
28.8
28.8 | i | | ###
88 | 1 | 11 | 11.3 | 2 | | SARINGER | | Ultimate
psi | 6/2-1.5 | j | 1 | 1 | • | i | i | 1 | } | | | 1 | | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | ##
88 | 35 | 13
13 | 320 820 | | ##
| | | 8.8
8.8 | 1 | ·
 | 200 511 | 3 | | ECAR | · | cress, § | s/D-2.0 | | | | | | | | | 38
44
44
44
44
44
44
44
44
44
44
44
44
44 | | | | | | | | | 333 | | 15.
188
188 | | | | | | | 88
83
33 | مرکم فاور ز | 88
62
62
63
63
63
63
63
63
63
63
63
63
63
63
63 | 25
25
26
26
26
26
26
26
26
26
26
26
26
26
26 | 1 | 88
88
88 | 8 | MI 501 | | | 1 | Yield Stress, § | 0/0-1.5 | | | | | | | | | 38
88
88
88 | | | | ٠ | | | | | _ | | 11
11
11 | | | | | | | 33
28 | | | 45
83 | | 112 100 | 8 | 112.38 | | | Matulse | Stress, | e/D-2.0 | | | | | | | | - | 202
202
202
202
202
202
202
202
202
202 | | | | | | | | | | | 186
186
186
186
186
186
186
186
186
186 | | | | | | | \$1
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2 | | | 85.55
85.55
85.55 | | 255
255
250
250
250
250 | 25. | 85 15
15 15 | | | | Ultimate Stress, | o/D-1.5 | | | | | | | - | _ | 38
37 | | | | | | | | | | - 5 | 388 | | 122 300 | 188
188
188
188
188 | 185
185
185
185
185
185
185
185
185
185 | 22.20 | 3.6
3.6
3.6 | 158
158
158
158
158
158
158
158
158
158 | | | 83 | • | 123 100 | \$8
\$8
\$8 | 700 | | MECAN | | Ultimate | Stress, | | | | | | | | | 8,8
8,8 | | | | | | | | | | | 18 | | | | | | | 13.8
18.8
18.8 | | 200
200
200
200
200
200
200
200
200
200 | 88 | 317 | S. S | 38
325 | ئة
ا | | COMP. | | Yiold | 55.033,7
po1 | 2 | | | | | _ | | - | 86
86
86 | | | | | | | | | | | 38
38
38 | | 47
88 | <u>ရ</u> | 288
888 | 8 | 2000
2000
2000
2000
2000
2000
2000
200 | 17.
17.
1003.
1003. | | | 88 | | | | 88
Et | | | | - 41 - 41 - 41 - 41 - 41 - 41 - 41 - 41 | 0 40° | 0 3,6 | | | | | | | | ระหา
เวลา | | | | | | | | | | | 25.5 | | | | | | | 100
100 | | | | _ | | | 00.4 | | 7549115 | | Yield | Stross,* | 1 | | | | | | | | 24
25
25
26 | | | | | | | | | | | 200 | | | | | | | 78±
385 | | | | | | | 88
85
85 | | | | Attante | 357333,
F31 | 25 27 | | | | | | | | 25
35
35 | | | | | | | | | | | 38 | | | | | | | 288
288
288 | | | | | | | 36
36
36
36 | | | | ä | 100 | , | ٦ <u>۴</u> | 1, | 15 |
 -: | ä | تدا | ង | 'nĘ. |
1 | | 5 | ٦. | 3, | ع <u>د</u> | 1. | ń | н | 5 | af: | 1 | n.E | i.i | <u>۔</u> | i
E | 'n. | it | 1 | a! | 1,1 | 518 | 5,3 | i
i | 给 | | | | | 100 | ، ا | د | C | ٥ | C | • | O | | U | | ຍ | | 0 | • | • | C | • | O | , | ပ | | ບ | O | c | • | × | ပ | | x | O | | × | U | , | | | 2000 | 1902 | Producer 1 | 404.60 | 50T40# | SAN ENERS | 200 | 701874 | | 201636 | | 281596 | | 270087 | | 2012041 | 4 54 500 | *T+702 | 281 11 3 | 1 | 281509## | 4 | 107 | | श्चारक्ष | 251661 | 281388 | | 281285 | | , | 2615024 | | | स्तारा | | | | | 9 | 31. | | 1 | 0.514 | 364 0 | 2.5 | 0.778 | , , , | 0.420 | | *** | | 8 | | 20.50 | 4 | Š | 60.5 | 3 | 0.875 | | 0.633 | | 1.125 | 3.38 | 98 | } . | 7.6% | | | 3.001
3.001 | | | 2.350 | | | -- CONCLUTIND ON NEXT PARE- TABLE VII(CONCLUBED) MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED 7075-1651 FLATE | | | | | | TA SECTION | | COMP | 875-48 | 1 | | | ECAR. | Dig see | | | | |--------------|---|--------|-----------------------------|------------------------|---|-------------------------------|----------------------|--|---|---|--|--|---|--|---------------------------------|--------------------------| | ¢ | ,
,
, | | | | | | ı | | | Platur | ١., | | | Edgevi | 1 | | | Thick- | 15 | | ä | Utimato | Yield | Elongation | Yield | Ultimate | Ultimate | Ultimate Stress, | Meld stress,5 | ress, 5 | Untimate | Ultimate Stress, | Yield Stress, § | 1089,5 | | nens,
In. | Producer | tion. | 120 | Strons, | Streas, * | t or 4D, | Stress, *
ps1 | Stress,
psi | e/L-1.5 | e/D-2.0 | e/0-1.5 | e/D-2.6 | 6/0-1.5 | e/0-6.0 | e/D-1.5 | e/D-2.0 | | 2.350 | 28165411 | × | ءِد. | 85
55
55
55 | £13
838 | 30.5 | 38 | 006 64
64 | 126 100 | 155 100 | 112 200 | 131 400 | 11 | 11 | 11 | 11 | | | | ပ | ia!i | | | igo
Serin | -
888
325 | 888
844
844 | 155
185
185 | 144
144
188
188 | 13.1
88 | 188
188
188
188
188
188
188
188
188
188 | 33
88 | 151
151
151
151
151
151
151
151
151
151 | 88
88 | 127
127
800
121 | | 2.269 | 281411 | × | ir.g | | | 7.0. | 223
223
223 | 188 | 88 | 38 | 118 600 | 135 100 | 1 1 1 | | | | | | | o | 84LE | 8238
8338 | 151518
1888
1888 | ာ့စ္ခင္ခဲ့ခဲ့
မရွင္အခဲ့ခဲ့ | -225
8888
8888 | *33
888 | 182
183
183
183
183
183
183
183
183
183
183 | 1883
1883
1883
1883 | 1
1
1
1
1
1
1
1
1
1
1 | 38
177
177 | 222 | 155
155
90
155
155 | 85.55
85.82
85.82 | 123 188 | | 2.501 | 301894 | × | ئد. | | | 5.0 | 55
55
55
55 | 25
24
25
25
25
25
25
25
25
25
25
25
25
25
25 | 133 000 | 15.5
200
200
200
200
200
200
200
200
200
20 | 111
880
808 | 124 788 | 11 | | 11 | 11 | | | | O | Hali | | | က
က
က | 88
22: | 25
25
25
26
26
26
26
26
26
26
26
26
26
26
26
26 | 125
125
138
138 | 155
700
153 100 | 100
100
100
100
100
100
100
100
100
100 | 155
55
55
56
56
56
56
56
56
56
56
56
56
5 | ###
###
| 148 300
142 000 | 88
88
88 | 88
88
88 | | 2.501 | 301897 | ж | 5.45 | | | 400 | 388 | 88
43 | 122 700 | 125
125
135
135
135
135
135
135
135
135
135
13 | 017 | 1.55
1.85
1.88 |] | | | | | | | O | 라 | | |)
(၁၀) | 888
888
899 | ##
888 | 188
188
188
188
188
188
188
188
188
188 | 133
188
88 | 155
158
158
158 | 124.28 | 105 700
105 700 | 25.
27.
288
28. | 85
86
88
88 | 85
85
85 | | 2.773 | 164182 | × | S at | | | -113.
20.0 | 3000 | 200
200
200
200
200
200
200
200
200
200 | 85 | 151 | 900 | 127 900 | 111 | { } { | | | | | | O | เลยเ | 883
833
834 | 8888
8888 | امار
امار | :cc: | 15.000
15.000
1000
1000 | 122
122
122
122
122
123
123
123
123
123 | 144
148
800
149
149
149
149
149
149
149
149
149
149 | 700
100
100
100 | 1231 | 250
200
200
1 | 88
88
1 | 101
101 | 88
188
188 | | 3.025 | 281,420 | × | n; | | | s, | | 0021
1130 | 124 000 | 250
800
800 | 106 600 | 125 000 | 1 1 | | | 11 | | | | ပ | i.aS | | | ຳໜູ້ | | :#4
88 | 188
188
188 | 15.35
15.35
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85
18.85 | 1455
1455
1455
1455
1455
1455
1455
1455 | 124
288
288 | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 25
25
28
28 | 101
101
202
203
203 | 22
28
28 | | 3.953 | જાલ્ફ | × | is at | 483
483 | 844
858 | 200
200 | *83
888 | 288
444 | 122 12
505
505
505 | 11.
000
000
000
000
000
000
000
000
000 | 88
 88
 88 | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 111 | 111 | 111 | 111 | | | | ပ | 81.2 | | | 00 | | 88
| 110 400 | 145 100 | 000 | 120 700 | 100 | 25. 75. | 188 | 82.61 | | | | | is
is | | | 0.7
0.0 | | 1 100 | ₹
 | 15.7 mg | ξ,
ξ, | 14 | 3 | 31 | <u>}</u> | 3 | | C. Cerro | ountor of thickness; M, mot equals 0.2 per cent, wet equals 2 per cent of ampretading 1 II. Jens of | De pos | sa; M, a
cent.
ont of | aldian bet
pin diam | C. centor of thickness; M. midway between centor and murb
Office equals 0.2 per cent. Of pin dissector.
Office equals: 2 per cent. of pin dissector.
I. Herstudinal: II. Jen. transverse: 37. short transverse | or and surf | 30 80 of | plate. | 11 Falled
11 Fro Pr
55 Average
50 Special | Failed before regressible Producer Baverage of two Specimens and f | eaching 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | *Alled before reaching 2 per cent offset. For Producer By all others from Producer Fromes of two tests; all others, single the specimens and fixtures cleaned ultrasories. | firet.
hucer A.
Ele tests.
onicelly in | 400tone. | | | | ļ
1 | | İ |)
} | • | | | į | | • | | | | • | | | | 8888 29164244 301876 MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED 7079-1651 PLATS 155 500 155 500 155 100 157 100 150 10 281405 281350 281570 2815790 281599 281599 281693 1.635 0.750 0.252 0.315 0.501 0.625 TABLE IX. (CONCUDED) RECHANGAL PROPERTIES OF STRESS-RELIEVED STRETGED 7079-1651 FLATE | | | | μ | | TESTEST | | CONT. | - SHEAR | | 519 | | EXRI | 1.6** | | | | |------------
--|------------------|--------------------|--------------------------------|--------------------|---|--|--|---|--|---|---|--|----------------------|------------------------|-------------| | 質 | 14 | F-4 5 | Di- Ultimate | | Yeld | Elengation
In 2 in. | | Utimate | Ultimate S | E LE | | Yield Stress, § | Ultimate Stress, | Stress, | Tise Xield Stress, § | 1033,5 | | 7 31 | 5 | tion, ti | lon | - 1 | ps4 | 10,10 | pot
pot | psi
psi | e/D-1.5 | e/D-2.0 | e/D-1.5 | e/D-2.0 | e/D-1.5 | e/D-2.0 | 9/2-1.5 | e/5-2.0 | | | 2)1554 H | 역담다담다 | 43942 N | 88833 | 88888
88888 | udovari
udovari | 82222
83288
83288 | #####
\$\$\$\$\$
\$\$\$\$\$ | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 2822
8883
1 | 18888
18888
18888 | 8888
8888
1 | 1100 | 145 700 | 10# 300 | 1144 | | | Э | | rror: | 32,53 | | ಚಿಡಚಿತ್ರ
ಕಾರಂಪ್ರ | 577.5
50000
50000 | 8288
8288 | 2500
1227
1227
1200
1300
1300
1300
1300
1300
1300
1300 | 12 200
12 | 5555
8558
8558 | 2555
2555
2557
2557
2557
2557
2557
2557 | 1199 | 1185 | 1182 | 1141
888 | | 4 ; | 5 384188 | 경본스럽느점 | | ୢ
ଌୢଌୢୡୢୡୢଌୢ | 588888
387728 | 47.000.1
Fanor.0 | ,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ########
\$\$\$\$\$\$
\$\$\$\$\$\$
\$\$\$\$\$\$ | 157
157
157
158
158
158
158
158
158
158
158
158
158 | 124 22
25 25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 18258
18258
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288
18288 | 111881
111881 | 14.7 500
14.5 500 | 11134
38 | | | <u>~</u> | 0 CONTROL M | | \$ 8 4 H C | 80003 | 28033
28033 | స్తుచ్చారు.
చూడి చేసి
చూడి చేసి | 2 88888
8888 | 25 72
38 73
38 73
38 73 | 181
181
181
181
181
181
181
181
181
181 | 25 35
35
35 | 601
601
601
601
601
601
601
601
601
601 | 175 600 | 111 | | 38
 38 | 11183 | | 7.2 | N SECTOR | ន្ត្រីក្នុងខ្លួន | erzeres | <u> </u> | <u> </u> | 49549999999999999999999999999999999999 | 44 88 888
44 88 888 | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 144 44
83 188 | 45 44
88 88
168
168
168
168
168
168
168
168
168
1 | 55
55
55
55
55
55
55
55
55
55
55
55
55 | 82 84
82 85
85 85 | H 1 | | 84111881
852
873 | H 1888 | | ဆ | 301879 M | 그부팅그부팅 | 8873845 | 888888
888888
888888 | 888788
858888 | స్త్రాణ్యం
లంగంలం
కార్యాత్రాణ | 888888
888888
888888 | 25 25 25 25 25 25 25 25 | 344
889
889
889 | 150 000 | 105 500 | 11, 500
11,6 800
11,5 100 | | 111888 | 11188 | 111 44 | | 3 0 | M Marker M | 경로스러타 | K82483 | 8888888 | 8888888
8888888 | ည်ရှာအတွင်း
ကိုသိုင်တွင်း
<u>လူနေရှာစ္စရှာအ</u> | 2000000
2000000
2000000000000000000000 | 83 22
122
134 134 | 88 88
111 112
111 112 112 112 112 112 112 112 | 60
60
60
60
60
60
60
60
60
60
60
60
60
6 | 88 88
88 88 | 124 124
88 188
188 1 | 100 000 000 100 000 000 000 000 000 000 | 11188 | 11188 | 110000 | | 10300 | Orest of thickness R. Offset equals to por cont. 2) fiset equals to por cont. 2). I contribution in large and | orses K | ate mide
of pir | ay between districted inverso; | on cente | i midway between conter and surfa
of pin dismoter.
; transverse; Sr, ahort transverse | 3 | plate. | SS Aven | led before I
rage of two
cinens and i | recuing 2 1 other tests; all | per cent off
rs from Proc
others, si | Set.
Licer f.
Sele tests.
secielly in | acetone. | | | MCHANGCAL PROPERTIES OF STRESS-RELIEVED STRENCEED 7178-1651 FLATE | | | | | | TENSIIE | | 6.8 | THEAR | | | | HEAR | BEARDNO*** | | | | |--------|-----------|-----------|------------|------------|----------|---------------------|-------------------|--------------------------|--|----------------------|--|----------------|-------------------|----------|------------------|---| | 9 | , | | | | | | | | | 12. | t 12.00 | | | শ্ৰন্থ ব | evi se | | | | OTGER 1 | | E | T + 1 meto | Yield | n 2 10. | Wield. | Stimeto | Ultirate | Stress, | Vield S | Stre8s, | Ultimete | Stress, | Meld Stress, | 5 '880. | | | To put | 3 | | 1000 | Stross. | 5 | T. 70 35 . # | Stress, | B. | บ | Í | - | 25 | ,, | E I | | | į | Prod: 247 | tien tion | £3.00 | ped | ps1 | × | ps1 | ps1 | 6/2-1.5 | e/0-2.0 | 6/1-1.5 | 0.2-0/e | e/m1.5 | 0.50/0 | e/D-1.2 | 0.50/0 | | | 3 | , | , | 5 | i | | a | | - | - | | | ł | i | ļ | ١ | | 8 | 3 | 3 | ⊒ , | | | קיני
היי | | | | 16
18
18
18 | 110 | 200 | 1 | 1 | 1 | 1 | | 5 | 264.66 | د | 1. | | | ייי
קייי
פייי | | | _ | • | _ | | ł | į | 1 | 1 | | Š | 2 | > | | | |)-C | | _ | _ | - | | | I | 1 | 1 | i | | 920 | A. B. C. | C | ٠, | | | 200 | | _ | _ | _ | • | | į | 1 | 1 | ł | | 21.0 | 7 | • | ä | | | 0 | | | | ٠. | ٠. | | 1 | ļ | 1 | 1 | | 300 | , 300° | c | ٠ | | | 0.0 | | | ٠ | | • | | ļ | 1 | 1 | 1 | | | 1 | , | 12 | | | e. | | | • | _ | • | | 1 | 1 | ł | 1 | | 0.412 | 28162183 | ن
س | 1,1 | | | i
S | | | | _ | | - | 1 | 1 | ļ | 1 | | | | • | 1 | | | 1 | | | _ | | | | Į | 1 | } | 1 | | 6.403 | 281810 | C | | | | 15.0 | | - | _ | | _ | | 1 | | I | i | | } | 2 | , | t: | | | 2.17 | | | | - | | | I | l | | ł | | A. 4.0 | 287.88 | 2 | 1,2 | | | 10. | | - | - | _ | _ | ٠. | | I | ļ | | | | 4 | | i f | | | 0.5 | | | _ | _ | _ | | 1 | İ | 1 | | | S ATK | 20175322 | 3 | ۱,. | | |);; | | | • | _ | _ | | { | 1 | į | ł | | | 1 | • | 1 | \S
3 | 7. | 3 | 8 | 8 | 15 15 15 15 15 15 15 15 15 15 15 15 15 1 | _ | | | ļ | 1 | l | 1 | | | | | | | | | , | | | | | | | | | | | 005.0 | 25,7750 | υ | د, | | | 10.0 | 8
8 | _ | •• | | | 88 | | İ | ì | 1 | | | i | | # | | - | 20.3 | 8
3 | _ | _ | • | - | 3 | ; | l | ł | 1 | | 00 | 2006344 | U | | | | 2.5 | ಜ
ಜ | • | ·. | | | 8 | 1 | ł | ļ | • | | | | | 13 | | | 25.1 | 88 | • | Ξ. | • | ٠. | 8 | 1 | { | 1 | 1 | | 9 | 2011 | ပ | - | | | 2 | 88 | ••• | ٠. | _ | | | Ì | į | | ł | | | | , | H | | | - | 8 | | • | - | | | 1 | İ | | 1 | | 407.0 | 887.68 | ย | 1,2 | | - | 2.5 | 8 | _ | • | | _ | | 1 | ļ | 1 | 1 | | } | 1 | ì | 12 | | | 12.0 | 2002 | _ | Ξ. | _ | _ | | 1 | į | Ì | { | | 6.520 | 2017344 | ت
* | د, ا | | | 20.0 | 86 | _ | ٠. | ٠. | | - | 1 | 1 | 1 | ļ | | | | | 1 | | | 0.00 | 8
8 | • | | • | _ | | i | i | į | | | 9 | 17. L | ပ | ,1 | | | ٥.
تا | 300
8 | | | _ | | | ì | i | 1 | 1 | | | | | H | - | | 2.0 | 8 | _ | ٠. | | _ | - | 1 | 1 5 | 1 5 | ا
پرا | | 00°T | Edg | ບ | ,1 | | - | 80 | රි
ස් | | _ | - | - | - | 38 | 35 | 3 | 32 | | | | | 1 | | | 2°5 | 8
8 | | | | | | 3 | 3 | : | | | 1.000 | 20057 | o | n! | 88
88 | 88
88 | e c | 88
88 | 88 | 38 | 8.5
8.5
8.5 | 38
55
55
55
55
55
55
55
55
55
55
55
55
55 | | | | 11 | 1 | | | | | 4 | | | | 3 | • | • | | | | | | , | | | 2.2 | 251736 | O | n# | 88
33 | 88
88 | 00 | 888
888
888 | \$2
\$2
\$2
\$2 | ************************************** | 88
88 | 합
합
청
왕 | ##
##
88 | ###
###
| 88
48 | #
8
8
8 | 55
58
58 | | | | | | | | | | | | | | | | 1 | | *************************************** | | | | | | | | | , | 1 | ; | | ~ | | | | | | * C. center of thickness; M. aldway between center and surface of plate. * Offert—equals 0.2 per cent. If the dissolar. * Offert equals 2 per cent of plat dissolar. * I. langitudinal; II. long transverse. * It Pailed before reaching 2 per cent offert. TABLE XI MECHANICAL PROPERTIES OF PLAIE OF SEVERAL ALMININA ALLORS IN THE "HEAT-TREATED-BY-USER" TEMPER (Contract No. AP33(657)-7637) | | | | | | | | . — K | vontract no. Ar22(021)=102(| 1601-(160) | _ | | | I.S. e.e. | | | | |------------------------|----------|-------------------|--------------|-------------------------|----------------------------------|---|--|---
---|----------------------------------|---------------------------|--|------------|--|----------|--------------------| | | • | • | | | TEMPT T | | | | | 2 | 18. | | | Tesev | 3 | | | | Toldmon. | aple. | 2 | | , | Slongution | 703 | | Mtimite | N. 74. 85 | Yiele S | Tiele Stress. | Difference | 8 7 3 S | Viela S | tress. (| | ALLOY
And
Temper | ness, | Mubor | Loca- rec- | Stress, | Street | 39, * or 4D, S | Stress, t | Stress,
pst | a €. I=α/e | 0.5.C/a | e/Dalif Ps | 2:3 - 0/- | e/0-1.5 | **1 1 | e/orl.F | 2-1-5 e/2-0.5 | | 3014-15 | 0.312 | 241364A | ភ | 55
200
100
100 | | 17.0 | 000
000
000
000
000
000
000
000
000
00 | 009 24
001 91 | 000
111
111 | 145 900
141 700 | 255
255
256
256 | 11
28
28
28 | 11 | 11 | 11 | 11 | | | 0.550 | 281395A | o
백 | %
%
% | <i>\$6</i>
88 | 25.5 | 88
88 | 83
33 | %%
FF | 142 800
144 800 | 88
88
88
88 | 11.2
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 11 | 11 | 11 | 11 | | | 1.001 | 281.36GA | o
u | 47.
88 | <i>88</i>
88 | သူ့
ဝင် | 88
87
85
85 | 22
23
28
28 | 109
115
100
100
100 | 138 300
140 400 | 88
88 | 88
33 | 88
88 | 88
R4 88
R4 88 | 48
\$ | %%
| | | 2.500 | 241547A | 4. 0
기타기타 | 88888
88888 | 883888
34838
34833 | grovy
vivovs | 38383
38383 | \$888
1 | 1 888 88
1 | 130 7005 | 8838
8838
8838
1 | ####
####
####
| 1122 | ।। वर्षे | 11881 | 1188 | | 3024-Th? | 0.252 | 281433A | ი
기취 | 88
28
29 | 자료
88 | ងម
លំបំ | 889
822
824
824 | 35
35
35
35
35
35 | 98
98
98
98 | 55
55
56
56
56
56 | 82 700
79 900 | 88 | 11 | 11 | 11 | 11 | | | o.501 | 281.373A | o
T | 88
88 | 998
43 | 88
vo | 26.800
26.800
26.000 | 25
25
26
26
26
26 | 102 730
106 500 | 124 000 | | 88
88 | 11 | 11 | 1 1 | | | | 1.001 | 281 <i>377</i> .k | ងដ
ប | &9
88
88 | ###
888 | 83 | 253
253
253 | 11.12
001
001 | 2%
888
888 | 25.
25.
26.
26.
26. | | 36
88 | 88
33 | 88
12,6
12,6
13,6
14,6
14,6
14,6
14,6
14,6
14,6
14,6
14 | 33
38 | 4%
33
33 | | | 2.001 | સ્ક્રીક્ટીએ | x o | 88888
84738 | 44734
85588
85888 | 01144
075070
02020 | 25555
25555
25555
25555
2555
2555
2555 | 2388
8888 | 1 800 4 800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2525
2525
2525
1 | 2355
3888
1 | 8888
5388
1 | 1188 | | 1132 | <mark>%%</mark> | | 2021-162 | 0.252 | 2614338 | 마침 | 58
85
85 | 55.73
55.73
50
50
50 | 12.5 | 38
38 | 28
28
24 | 116 500
115 700 | 146 000
147 800 | 88
88 | 88
33
33
33 | 11 | 11 | 11 | 11 | | | 0.501 | 281378B | o
កដ្ | &&
&&
&& | 88
88 | ង្
ភូមិ
ភូមិ | 57
20
20
20
20
20
20
20
20
20
20
20
20
20 | 006
24.03 | 109
209
200
200
200 | 121
121
888
121 | 88
88 | 200
200
200
200
200
200
200
200
200
200 | 11 | 11 | 11 | 11 | | | 1.001 | 281.7778 | o
HH | 23
35
35 | 56 600
56 700
56 700 | 12.5 | 88
88 | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 200
200
200
200
200
200
200 | 85
85
85
85 | | 33
83 | 82
88 | 13.
13.
88.
88. | 88
83 | 109 700
107 800 | | | 2.001 | 2815728 | x o
기업적립합 | 88888
88888
88888 | 822222
82222
88853 | 84.00
0.00
0.00
0.00
0.00
0.00 | \$25588
\$25888 | 8888
8822
1 | 955
955
955
955
955
955
955
955
955
955 | 2222
2888
1 | 8888
8888 | 1100
1000
1000
1000
1000
1000
1000
100 | 1188 | | 1123 | 154 800 | -CANTINGED ON NEXT PAGE- TABLE XI(CONTINUED) MECHANICAL PROPERTIES OF PLATE OF SEVERAL ALIMINUM ALLOYS IN THE "HEAT-THEATED-EN-USER" TEMPER | | | 5,883 | s/0-2.0 | 1 | ! | | 88
38 | 1188 | | 88
 88
 88 | 1 000 1 1 1 1 1 1 1 | 111 8888 | |-------------|------------|------------------|------------|----------|----------------------|----------------------|---
---|---|---|---|---| | | 36 | Yield Stress, 5 | e/D-1.5 | ı | | | 55
55
56
56
57 | 1188 | 1 98 | 105 100 | 1188 | | | | Edgevi | Stress, | e/D-2.6 | ı | | | 147
150
600 | 1 222 | 147 800 | 1188 | 1188 | 111 8388 | | E ARING *** | | Withate Stress | e/D-1.5 | 1 | | 11 | 253
911
110 | 11 tig
1 82 1 | | 11.241
888 | 1106 500 | | | EAR | | Yield Stress, 5 | e/D-2.0 | | 388
888 | | 127 100
129 200 | \$2889
1787
1787
1787
1 | \$888
5588
5588 | 2555
2555
2555
2555
2555
2555
2555
255 | 3888
1888 | 38888888
888888888 | | | 71 Se | Yield | e/D-1.5 | | 388
3111
11111 | | 110
120
130
130
130
130
130
130
130
130
130
13 | 8888
FFFF | 1 8888
1 8888 | 1158888
1158888
1158888 | 1108 880
1108 880
1108 880
1108 880 | 288888888
2888888888888888888888888888 | | | Flatvise | Ultimate Stress, | e/D-2.0 | | 888
888
888 | | 155 500
155 100 |
22,885
8,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885
1,885 | 2555
2555
2555
2555
2555
2555
2555
255 | 851
151
151
151
151
151
151
151 | 152 000 | 68888888888888888888888888888888888888 | | | | | e/b-1.5 | | 388
335 | | 125 750
127 500 | 2222
2222
1 | 3225
325
325
1 | 2222
2222
2888
3888
1 | 8888
1 8888
1 8888 | 88888888
888888888 | | SHEAR | | | ps1 | | ****
***** | | #6 700
#5 800 | 8888
1 | 88388
1 | ####
8888
1 | 88888
47428 | 00000000000000000000000000000000000000 | | COUP. | | | ps1 | | 388
888 | | 88
88 | 22535
28888
28888
28888
28888
28888
28888
28888
28888
28888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
288
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
2888
288
2888
2888
2888
2888
2888
2888
2888
2888
288
2888
2888
2888
288
288
288
288
288
288
288
288
288
288
288
288
288
288
288
288
288
2 | 22222
22222
88883 | 52555
52555
52555
5255
5255
5255
5255 | 88448
88858 | 11272277
8888888888888888888888888888888 | | | Elongation | 71 %
F | 5 | 16.0 | ງນະ
ບໍດີດ | 5 55
5.55
5.05 | 12.5
25.5 | 11337
00000 | ညီဝီဝဲ့ <i>လွ</i>
ဝလ်လဝ်လ | 345 <u>8</u> 9
001004 | A
SASA
Lingula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula
Ringula | นูนูนูนูนูนูนู
อ่อ๋พ่อ๋อ๋อ๋อ๋ | | TENSILE | | Yield | ps1 | | 56k
888 | | 88
44 | LKKF2
88838 | 45458
83888
83888 | 34664
88888 | 44848
8988
8988
8988
8988
8988
8988
898 | 83585888
83585888 | | | | Uttrate | pet
pet | | 288
888 | | 86
86
86
98
98
98 | arrar
88888 | 844346
88888 | 28888
88888
88888 | 76 000 \$5
76 000 \$5
79 100 \$5
79 000 \$5 | 38888888
38888883 | | | | 70 | lon tion | ი
ካ‡ | o
luf | o
담다 I | o
Fir | x o | x o
rgrpp | x o | x o | 0 0 0 0
पद्मपद्मपद्मपद्मपद्म | | | Samplet | | Musber | 281,3814 | 301875A | 281382A | 2813864 | 281380A | 281283A | 281418A | 281.387A | 281422A
281389A
281383A
301857A | | | S | Thick- | , in. | 0.375 | 0.379 | 625 | 1.50 | 90
20
20
20 | 2.501 | 2.522 | 3.001 | 0.252 | | | | ALIA | Tempor | 7075-16 | | | | | | | | 7079-16 | -- CINCLIDED ON NEXT PACE- TABLE XI(CONCLINED) MECHANICAL PROFERENCES OF PLATE OF SEVERAL ALMERA HALONS IN THE TELTTEL-EN-USER" TEMPER | | ٠, | ю | ي د | ن ر | , , | 1,210 | F1. js | 1 112 | £ () | | | |------------|-----------------|--|---
---|---|--|--|--|--|--|---| | | | Pat Paris | ।। ^{श्रु} | ।। भूष | | | | | ।।।
इंद्र | | 1 ! | | | | Yieli. | 11 33
33
33
33
33
33
33
33
33
33
33
33
33 | 1133 | | | 33
 33
 33 | 11188 | 111881 | | 11 | | | ĺ | 1. traks, | 11 356 EAR | | 335 44 | 1144 | | 11188 | | 1111 | | | ECARDIO*** | | Tithate
e/Sel.: | 115 PEE | 11:25:25:25:25:25:25:25:25:25:25:25:25:25: | 112 22 Ett. | 1123 | |)))
))
))
()) | 11132 | 1111 | 11 | | BEAR | | Stress, s | 2555
2555
2555
2555
2555
2555
2555
255 | 2555
2555
2555
2555
2555
2555
2555
255 |
9222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
1922
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
1922
19222
19222
19222
19222
19222
19222
19222
19222
19222
19222
192 | 1225
1225
1225
1225
1225
1225
1225
1225 | 89
83
88
88
88
88 | 118 500
118 500
118 500
119 500 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 250
250
250
250
250
250
250
250
250
250 | 136 400 | | | | Y.ele S | 25.25
44.65
44.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65
64.65 | 13355
14554
15545 | 11. 860
10. 750
10. 750
10. 750 | 3228
3228
3228 | 502 30
502 30
502 30
503 30
50
50
50
50
50
50
50
50
50
50
50
50
50 | 10 75 750
10 750
10 750 | 106 709
107 500
108 700
100 700 | 2222
2228
2228
2228
2228
2228
2228
222 | 11.5
700
700
700 | | | Matrice | Street, | #4##
#4##
#4## | 25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45
25.45 |
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#5555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#555
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
#55
| 8883
8883
8883
8883
8883 | 154 300
154 300
147 400 | 154 500
154 500
150 860 | 152 CCC
152 CCC
146 CCC | 176 800
176 800
175 500
175 500 | 881
882
883
883 | | | | Withoute programme program | ļ | 14885
14885 | 1000
1000
1000
1000
1000
1000
1000
100 | ###################################### | 25. 25. 15. 15. 15. 15. 15. 15. 15. 15. 15. 1 | 43 38
43 38 | सुर्व सुर्व
१५५ - १४४ | 4444
8883 | 35 35
35
36
36
37
37
37
37
37
37
37
37
37
37
37
37
37 | | SIEAR | | Untimate
Streus, | 444
888
888
888
888
888
888
888
888
888 | 2888
2828
2828 | 1,43,54
2,886
2,886
2,886
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,486
1,48 | \$7898
87898 | | 33 83 P | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 8888
8888 | 55
64
64
64 | | COMP. | | Xield
Stress,* | 4.64.6
8888
8888 | | 388888
334432 | | #885888
8888888 | 8833883
8833883 | 888888
888888
888888 | 8838
3838 | 88
88
80
80
80
80
80
80
80
80
80
80
80
8 | | | ים זיים בים לים | in 2, in. | 9444
00000 | ಚಿ ಚ್ಚ
ನಸಂಘ | ပည်စည်စု <i>မှ</i>
ပင်္ကာရာဝဝဝ | wonor
wonor | igavario
iniporio | ည်စာ <u>း</u> စု(-မှ
ဝင်ဝင်က်ဝင် | Loundary
ocivivino | นนนน
พ.ต.พ.ส
อณออ | 13
13 | | TENSILE | | Xield
Stress | 5248
8838
8838 | | 38888
348888 | | 8 <i>488</i> 888 | 888888
888888 | \$88888
\$88888 | 8888
8888
8888 | 88
88
88
88 | | | | Utimate
Strust, | 5258
5258
5258
5258
5258
5258
5258
5258 | | 448848
448845 | | ************************************** | 446668
446668
888888
888888 | <u> </u> | 8888
8888 | 88
88 | | | | Loca- rec- | 포 o | ж о
ч <u>р</u> чр | x o | x o | * 0 | 표 o | x o | o o
Կ닭꺽벍 | o
러뷰 | | | 101 | 1 : | l at | 3018584 | 301859A | खाभद्रभ | ж1860к | 301850A | 301851A | 301830h
281421A | 301898 4 | | | 9 | Tuick-
ness, | 1.625 | 2.280 | 85.58 | 100 × | ∞0.4 | *** | . 800
800 | 0.25 | 0.633 | | | | All and a | 7079-16 | | | | | | | 7.178-76 | | * C. center of thickness; M. midway between center and surface of plate. † All samples received in the -O or -F temper (Table I) from Producer A and heat ** L. longitudinal; LT. long transverse; ST. short transverse. treated to the "heat-treated-by-user" temper by Alcoa Research Laboratories. § Average of two tests; all others, single tosts. † Offset, equals 0.2 per cent. RATIOS ANONO THE TENSILE, COMPRESSIVE AND SHEAR PROPERTIES OF STRESS-RELIEVED STRETCHED 2014-1651 PLATE TABLE XXI | 3 | Semple | | Ş | Long1tudinel/Lo | ong Transverse | 9 | In The Same Direction | Direction | Short Trans | Short Transverse/Long Transverse | Transverse | |--|--|-------------|-------------------|-----------------------|--|---|-----------------------|---------------------|----------------------|----------------------------------|--------------------| | Thick-
noss, | Kumber
and
Producer | Iocation* | 708(L)
708(LP) | TYS(L) | CTS(L) | $\frac{\mathrm{SU}(\mathrm{L})}{\mathrm{TOS}(\mathrm{LT})}$ | CYS (LE)
TVS (LE) | SU(117)
TUS(117) | 103 (ST)
103 (LT) | TYS(TY) | crs(sr)
rrs(1x) | | | 95,555 | | 200 | | | 29 0 | ۸, د | 63 | 1 | 1 | ı | | | 200 | | 3.0
 | 7.
7. | 35 |) o | 10.05 | /6 | 1 | Į | i | | 2775 | | ٠. | 3.5 | ,
,
,
,
, | 38 | 69:03 | 01.1 | 0.61 | 1 | 1 | l | |
3.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 261,485 | ာပ | | 1.00 | 1.02 | 16. | 1.07 | 0.62 | i | 1 | l | | | | | , | , | 8 | ₹ | ק
ל | 6 | 1 | 1 | ļ | | 88 | 201(2) | ၁င | 38 | ٦-
٢- | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 800 | 10.0 | 10.0 | i | ł | 1 | | 38 | לייל לילי
ממק רכיי | . | , c | ,
,
,
, | 88 | 63. | | 0.62 | 1 | 1 | 1 | | 300 | |) C | 8 | \c | 6.0 | 8 | さい | 0.59 | 1 | ı | Į | | | לבים במינים במינים
במינים במינים | ٠. | 18 | 50.1 | 8 | 8 | ₹
6.4 | 0.59 | 1 | 1 | ł | | 000 | 251739 | -
-
- | 180 | 1.02 | 8 | 0.59 | 1.03 | S. | 1 | 1 | ı | | | | • | | , | 5 | 0, 0 | 1.03 | 0.58 | 1 | 1 | ſ | | 3. | 25.5 | . | 38 | v C
 | 38 | 38 | ð | 2,5,5 | ſ | } | ł | | 83 | 20107 | υ |
%G | .00. | ;;; | | 1.03 | 0.57 | 1 | i | ı | | | | | ! | , | | , | • | 3 | _ | | ļ | | 1.501 | 301652 | × | ٦.0
ا | 1.06 | 7.05 | 0
0
0 | 63
H, | 36 | 1 1 | 1 { | ! ! | | | | O | ٠.
ور | 4,000 | 7.05 | ņī
o | 1, | 38 | | | ı | | 1.891 | 261436 | Z C |
686 | 3.5 | 18 | 182 | 1.02 | 0.56 | 1 | 1 | ı | | 0 | 283 656 | > % | 200 | 30 | 8 | 49.0 | 1.05 | ब | 1 | 1 | 1, | | 3 | 1070707 | (ပ | 1.05 | 1.05 | 1.03 | ٠
% | 1.05 | 0.57 | 8.0 | <u>ş</u> | 70.1 | | 3 | 000 | y | 9 | כ | 9 | 65.0 | 1.05 | 0.61 | 1 | ľ | i i | | % .87 | COTO: | ξÜ | 88 | 205 | ,
,
, | , N | 11. | 95.0 | まっ | 8 | 1.65 | | 2.250 | 291655** | × | 100 | 200 | 0 , | တွင် | ц.
0.0 | 18 | 18 | 9.0 | 1.06 | | Ş | ກຄາຍຕາ | 9 | 88 |) d | 58
10 | 18 | 20.1 | 8 | } | 1 | ı, | | 200.0 | 160702 | ŗΟ | ਜ਼ੂਜ਼
ਜ਼ੁਰ | iu
(9, | 8 | 0.55 | 1.05 | 1 , | 0.93 | S. | 5.5 | | | | | | | | | | | | | | * C. center of thiodness; M. midway between center and surface of plate. † From Producer C. All others from Producer A. ## Prom Producer B. RATIOS AMONG THE TENSILE, COMPRESSIVE AND SHEAR PROFERRIES OF STRESS-RELIEVED STRETCHED 2024-1751 PLATE TABLE MII | | | | | | | | | | | | | 1 | |--|---|-----------|--------------|--------------------|--|-----------------|--------------------------------------|----------------------------|-----------------------|-------------------------------|-----------------------|---| | Thi ck- | Manber | | þ | वे व | Long Transverse
CYS(L) | SU(L) | In The Same Direction CYS(IA) SU(IA) | SU(LA) | Short Tren
TUS(ST) | Short Transferse/Long TUS(ST) | Transverse
CYS(ST) | | | in. | Producer | Location* | 708(功) | 1138 (LA) | TYSTEE | TUS (LL) | TVS(II) | | TUS(II) | TYS (Lft) | TYS(I.F.) | | | 052.5 | 252464 | U | 1.02 | | 8.0 | 9.63 | 11.1 | 29.0 | 1 | ł | ı | | | 0 | 2815061 | O | ر
دور | • | ·.43 | 90 | ۲.
ورز | ુ
હ | 1 | 1 | 1 | | | ,
,
,
,
, | | ၁၀ | 200 | | 36 | 96 | , in | 0.60 | 1 1 | 1 1 | 1 1 | | | 0.5
5
5
5
5
5
5
5
5
5
7
5
7
5
7
7
7
7
7
7 | 2017/18 | Ö | 10.00 | • | 8 | ক্ত | <u>ਜ਼</u> | 9.69 | ì | ł | ı | | | ,
,
, | 55
55
55
55
55
55
55
55
55
55
55
55
55 | υc | ٠.
٩. | • | 8
8
8
8 | % | 7.6 | 200 | 1 1 | ; ; | 1 1 | | | 0.1(0 | 35.55 | 00 | i.u | 30.0 | 10
38 | 18 | 1:06 |
 | 1 | 1 | 1 | | | 03.0 | 241758 | c | 1.02 | • | 6,93 | 35 | 1.65 | ₹.°° | 1 | ı | ı | | | 3 | 20172 | ာပ | • • | | 0.97 | (S) | 70.0 | 300 | 1 | 1 | i | | | 0
2
1 | 201
201
201
201
201
201
201
201
201
201 | ပင | • | | 5
6
6
6 | 88 |).
0.0 | 30 | 1 1 | 11 | 11 | | | 200 | 281103 | 00 | 100 |);;;; | ু
ক | 86 | 66 | 180 | 1 | 1 | t | | | 0.750 | 20176 | တင | • | | 5
5
6 | 0 C | 30 | 20.0 | 11 | 1 1 | 11 | | | 800 | 20150811 | 00 | | • • | 8 | 0.57 | 1.10 | 0.56 | i | ı | 1 | | | 1.001 | 281279 | 01 | 1.02 | ָבְירָ
הַלְּי | 88 | 75.0 | ਜ਼ ਂ | 0.50 | 1. | 1 | 1 | | | 1.
8.2
8.2 | 291497 | ບບ | 36 | 1.10
01.1 | 38 | 200 | 58 | 0.0 | 11 | 11 | 11 | | | 44
88 | 28
28
28
28
28
28
28
28
28
28
28
28
28
2 | ပပ | 44
66 | ۲.
درن
درن | 0
0
0
0
0 | 88 | નન
રુજે | 0.56 | 11 | 11 | ! | | | 1.990 | 301845 | × | 1.02 | 1.1 | 0.92 | 69.0 | 1.08 | 0.62 | ì | 1 | 1, | | | 5 | 0.800 | ပေသ | ر
د.
د | • | • | o c
c
o k | 4.
0.0 | 0 0
n'y 0
n: 0 | 33. I | 8; I | 7-00 | | | 3 | 51512 | ς Ο | 101 | | | | 4 | 13 | o.85 | 68.0 | જ | | | 5°000 | 2818444 | χU | 4.0 | بر
برند
پرند | 38 | 815 | 44
98 | 0.562 | اچ. | 18. | 1.01 | | | 2.001 | 291581 | × | 1.03 | • | 0.91 | 6.63 | 20.4 | 3.0 | j | ١٤ | 1, | | | 2.250 | 281598 | υx | | • • | ું
યુષ્ | 000 | -i-i- | 600 | § 1 | 7 1 | Ş 1 ; | | | 8.350 | 301782 | Oχ | | | চূর
১০ | 200 | 999 | ું
પુત્ર | ر
د
د | 8 1 |)

 | | | 50.00 | 287780 | ပန | ٠.
و.و | • • | \$.5
0 c | Ŋ | ,
0,0 | 0.50 | , i | 0.87 | 7.05
1 | | | } | CL TO | :0 | ::
:8: | | | ii
ii | 1.02 | 137 | 0.85 | 98.0 | 1.03 | | | 2,800 | 307848 | ×c | 8 .6 | • • | o- | 350 | 44
88 | 0
0
0
0
0
0 | 0.89 | 1.0 | 7.01 | | | 3.000 | 301846 | ×υ | | ;;;; | 6.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00 | | 369 | | 8.9 | 16.63 | 1.08 | | | | | | | | | | | | | | | | • C, centur of thickness; M, midway between center and surface of plate. TABLE XIV | ************************************** | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 123 141 141 141 141 141 141 141 141 141 14 | 100 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 | 13 ET | # 4 | (上記) (上記) (上記) (上記) (上記) (上記) (上記) (上記) | Shart Trees (sr) | Short Transverse/Long Transverse TUS(ST) TIS(ST) COS(ST) TUS(LT) TIS(LT) TIS(LT) | OCT (ST) TIES (IE) | |--|---|--|---|---|-----------------------------------|---|---|------------------|--|--------------------| | 281,590
281,615
301,783
281,750 | ZOZOZOZO | નુવાનું
૧ <u>૦૦૧</u> ૦
૧ <u>૦</u> | 44446646
48588848 | o.4040404
88888888 | ၀၀၀၀၀၀၀
လုပ္ပ်က္လိုလုပ္ပ်က္လို | ਜ਼ਜ਼ਜ਼ਜ਼ ਫ਼ ਜ਼ਜ਼ਜ਼
ਫ਼ਫ਼ਫ਼ ਫ਼ਫ਼ਫ਼ਫ਼ | 0000000
000000000000000000000000000000 | 19 18 18 18 | 18,18,18,18 | | • C, center of thickness; M, midway between center and surface of plate. • Frem Producer B; all others from Producer A: RATIOS ANONG THE TENSILE, COMPRESSIVE AND SHEAR PROPERTIES OF STRESS-RELIEVED STRETCHED 7075-1651 FLATE TABLE XV | ত্নত্ত্ত ন্ন্ন্ত্ন্ন ন্ন্ন্ন্ন্ ন্ন্ত্ন্ত | ব্যান্ত্র ব্যান্ত্র ব্যান্ত্র ব্রাক্তর ব্যাক্তর ব্য | ###################################### | นาย
อนาย เกาะ เกาะ เกาะ เกาะ เกาะ เกาะ เกาะ เกาะ | मार्था प्राप्त प्राप्तां प्रापतां प्राप्तां प्राप्तां प्राप्तां प्राप्तां प्राप्तां प्राप्तां प | 18 00000 000000 00000 000000 00000
19 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1000 100 100 100 100 100 100 100 100 10 | | 1.02
1.02
1.03
1.03
1.03
1.03
1.03
1.03
1.03
1.03 | |---|--|--|---
---|--|---|------|--| | iu uuo.
88 8866 | 44 444
4888 | ্র
১৯ ১৮
১৯ | 0 000
2 436 | . ಇ.ಇ.
ಆ ಇಸ್ಟೆನ್ನ | রচন্দ্র
১০০০
১০০০ | 5 855
5 855 | 1848 | 1 1000
1000
1000 | • C, center of thickness; M, midway between center and surface of plate. ** From Producer B; all others from Producer A. TABLE XVI NATIOS ANONG THE TENSILE, COMPRESSIVE AND SHEAR PROFERTIES OF STHESS-RELLEVED STRETCHED 7079-T651 FLATE | Semple | | | | Tomas trudens It | A and Then we made | | 1. T. | 74 75 CE 100 | Short Tren | Short Transverse / eng Transfers | Cambrara | |------------------|--|-----------|-------------------|------------------|--------------------|-----------------------|---|--|-------------------|----------------------------------|----------| | Insek-
thens, | Number
and
Producer | Location* | TUS(L)
TUS(LE) | 7 f , I | CES(L)
TYS(LE) | SU(L) | Crs(Lr) | SU(LL)
TOS(LL) | TOS(ST) | ms(sn)
ms(tn) | Tre(m) | | 0.252 | 281,406 | O | 0.99 | 1.05 | 0).1 | 0.59 | , t. | 0.59 | ļ | ı | • | | 0.
2.
2. | 281.65
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55
25.55 | O | 88 | ð.
dr | 9 | 000 | 900 | 7 | 11 | 1 1 | 1 1 | | 76 | 28150344 | ວ່ວ | 36 | .0. | 10.1 | 75.0 | 90.1 | 55.0 | 1 | 1 | 1 | | 0.750 | 281676 | 0 | 8 | 200 | 8 | 15.0 | 4.06 | 5.51 | 1 | 1 | 1 | |
88 | 88
80
80 | ပပ | 0 H | 1.
9.0. | 9.49
8.59 | 0
0
0
0
0 |
28 | 0
0
0
0 | 1 1 | 1 1 | 11 | | 1.635 | 281410 | × | 86 | 7.
1. | 88 | न | 75.0 | 9,0 | \$ 1 | 1 1 | 1 1 | | 2.000 | 20150044 | υχυ | ું
જુલ
જુલ |
444
969 |)
1049
1049 | ,
New
Year | | 000
555
500
500
500
500
500
500
500
500 | 18 | 6.9 | 1.5 | | 2.200 | 341876 | × | 88 | 1.02 | 20.0 | 2,62 | 20.0 | 84 | 18 | 18 | 107 | | 2.500 | 301877 | υχο |
 | ,
,
,
, | ુનન
૪વર | ने
ज़िल्ल | 144
268 | 000
000
000
000
000 |) is | 6.92 | 2.05 | | 3.000 | 28184244 | × | 8,0 | ٠.
ت | 88 | 6.0 | 90.4 | 9.0 | 18 | 18 | 1.0 | | 3.000 | 281,554 | ogo |
 | 188
188 | 929 | 300 | 144
809 | 0
5
5
5
5
5
5 | g. | 8.0 | 1.03 | | 3.001 | 261392 | × | 5.6 | ۲.
وو | 800 | 900 | 5.d. | 9.00 | 18 | 0.93 | 1.05 | | 3.277 | 281582 | υχυ | | 444
669 | 101
900
800 | 200 | 900 | 0.52 | हैं। | 18 | 1.0 | | 4.001 | 261192 | × | 76.0 | 56. | 8,6
0,7 | 84 | 90.1 | 0.62 | 6.0 | 88 | 1.06 | | \$*.¥99 | 281.393 | υχυ | | | 144
888 | 198 | i-i-i
88 | 198 | 88 | 40
88 | 88 | | \$-770 | 901879 | go | 1.02 | 28. | 1.08 | 0.63 | 44
99 | 0.0
0.5
0.5 | .00
.00
.00 | 88 | 1.05 | | 9 | 301878 | χo | 1.0
200 | 87 | 1.03 | 6 8 | 98.
1.68 | 98 | 8.6
8.6 | 88
88 | 1.07 | | | | | | | | | | | -1 | | | • C. center of thiodness M. midway between center and murface of plate. EMPTIOS AMORIO TERS TERSTIER, OMFRESSIVE AND SHEAR PROFESTIES OF STRESS-VELLEVED RESERVED THE-PEST FLATE TARES TOTAL | | Shert Trees | Transport Land | 103(111) | (37) (57) | | 11 | 11 | | | 111 | 11 | | 1 | | |---------|---------------|----------------|--------------|-----------|-------------|------|-------------|--------|-------------------|--|--|----------|-------|-------------------| | | S The Second | Ľ | 725(元) 元3(元) | 2.09 | 15.
5.5. | 1.09 | 1.00 | | | 1.00
0.05
0.05
0.05
0.05
0.05
0.05
0.05 | 1.04
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05 | 1.05 | 1. t. | | | | | 20,000 | TUS(IE) | ဇ္ဇဇ္ဇ | | | 7,5 | 0.59 | 1515 | 4818
 | 17.00 | | 0.52 | | | | 1/Leng Treate | CIS(I) | 7 1 1 1 | 1.02 | 0.0 | ių. | ייי
טייי | 90.1 | ਜ ਼
ਰੇ8 | 88.
00. | 888 | 100 | 6.9 | serfice of plate. | | | Lengitudine | 7 | 1 | ים
מים | 44 | 87 | H- | , | , e | | 144
28 | 1.03 | 7.02 | outer and our | | | | THE PARTY | 10.1 | 9 | 35 | 88 | 88 | | 100 | | 0.0 | 10-1 | 1.00 | , Manager | | | | Location. | C | Qς | 000 | ၁ပ | ပပ | C | ខេត | ပပ | ပပ | | 5 | 13. M. Millery | | Searnis | Technology. | Preduoer | 19/2/2 | 20105 | | 100 | X1733 | 252780 | 201663## | 124 88
174 88
174 88 | | y Carlot | 3 | er of the cree | | - 1 | Tales. | Ė | 0 | 200 | 222 | 9 G | N. | 900 | 35 | 183
101
101
101
101
101
101
101
101
101
10 | 44
8 | 1,250 | | | TABLE XVIII RATIOS AKONO TER TENSILE, CONPRESSIVE AND SHEAR PROPERTIES OF FLATE OF SEVERAL ALIMINOM ALLOYS IN THE "HEAT-THEATED-BY-USER" IENDER | | | Samplet | | nozi | gttudtnal/lo | Longitudinal/Long Iransverse | • | In The Same Direction | Direction | Short Trens | Short framsverse/Long framsverse | rensverse | |----------|----------------|-----------------------|-----------|-------------------|-------------------|------------------------------|------------------|-----------------------|--------------------|--------------------|----------------------------------|--------------------| | Alloy | mick-
ness, | Amber | Location. | 70S(L)
70S(LA) | TYS(L)
TYS(LT) | රුප(L)
ආප(ණ) | 30(L)
705(LP) | crs(元)
rrs(元) | 30(12)
708(12) | 105(ST)
105(LE) | $\frac{rrs(sr)}{rrs(i\pi)}$ | Cx3(ST)
TX3(LT) | | 2014-16 | 0.312 | 281364A | O | 0.97 | 8.1 | 1.07 | 0.65 | 1.07 | 8.0 | ı | 1 | ì | | | 0.550 | 261.365A | O | 98.0 | 6.9 | 1.05 | 0.61 | 30.1 | 0.60 | ı | 1 | i | | | 1.001 | 281,366A | o | 96.0 | 8.0 | 1.03 | 0.56 | 1.04 | 0.57 | ı | 1 | i | | | 2.500 | 281547A | χυ | 1.02 | 1.02 | 95.63 | 0.60 | 4.0.
50.1 | 0.59 | 18. | 0.97 | 1.03 | | 2024-142 | 0.332 | 283.4334 | o | 1.02 | 1.03 | 1.03 | 0.62 | 3.06 | 29.0 | ı | i | i | | | 175.0 | 281.5784 | v | 3.0 | 1.02 | 1.07 | o.6 | 3.06 | 0.6i | ı | ł | 1 | | | 1.001 | 281.377.A | ပ | 6.9 | 7.00 | 1.0 | 0.60 | 3.06 | 9.0 | i | ł | ı | | | 2.001 | स्थात्राक | χo | 46. | 44
88 | 1.07 | 0.0
Q.Y. | 1.03 | 0.6
6.53 | 1.0
26. | 6.93 | 96.0 | | 2024-162 | 0.252 | 2614338 | o | 1.01 | 7.02 | 1.05 | 29.0 | 1.05 | 19°0 | ı | 1 | ł | | | 0.501 | 281278B | ပ | т.
п | 1.01 | ₹
7. | 19.0 | 1.04 | 8.0 | ł | ſ | l | | | 1.001 | 260,2777.18 | ပ | 8.1 | 3.8 | 1.05 | 0.6s | 1.05 | 9.0 | t | ł | 1 | | | 2.001 | 2017728 | χo | o
80. | 64
88 | 1.02 | 0.59 | 1.03 | 6.5
6.8 | 26.9 | 96.0 | 1.03 | | 7075-16 | 0.375 | स्थात स्थाप
स्थापन | ပပ | 88. | 44
66 | 1.09
1.09 | ું.
હ્યું. | 44
88 | 0.55
55 | 11 | 11 | 11 | | | 0.625 | 261.382A | U | 86.0 | 6.9 | 3.06 | 0.57 | 3.06 | 0,56 | l | l | 1 | | | 1.500 | 2613864 | ຍ | 3.00 | 6.9 | 1.03 | ₹.° | 1.04 | 0.53 | l | { | 1 | | | 2.250 | 281,380A | χo | 88 | \$ 8; | 1.03 | 0.59
0.55 | .i.e
28 | 9.0
8.2 | 0.92 | េត | 1.0 | | | 2.501 | 261.3834
261.1184 | KOKO | 0400
8948 | ્રેલ્ફ
જ્લેફ | નુયું
8284 | ,
কুনুগুৰ | 4444
8262 | ๑๑๑๐
ชีวังชีวัง | 18,18 | 1.0 | 1.02 | | | 3.001 | 281387A | χo | 1.02 | 1.01 | 1.05 | 9.0
Q.Z. | 11.06
9.04 | এ.
জু | o.9 | 0.92 | 1 <u>.a</u> | CONCLUSED ON NEXT PAGE RATICS ANCHO THE TENSITE, CONCRESSIVE AND SHEAR PROPERTIES OF PLATE OF SEVERAL ALDRING ALLOYS IN THE "HEAT-THEATED-EX-USER" TEMPER TABLE XVIII (CONCLUBED) | | | Semplet | | Long | Longitudinal/Long Transverse | S Transvorse | | In The Same Direction | Direction | Short frans | Short Transverse/Long Transverse | TRIBVETO | |------------------------|--------------------------|--|--------------|-------------------------|------------------------------|----------------------|-----------------------|-----------------------|-----------------|--------------------|----------------------------------|------------| | Alloy
and
Tempor | Thick-
reas,
in. | . Member | Locatien | 703(L)
703(LF) | 778(L)
778(LF) | (元3(上)
(元3(上) | SU(L)
TOS(LF) | 008(LT)
778(LT) | Tas(Lr) | 103(ST)
103(LT) | 713(31)
713(11) | 725(37) | | 31-4101 | 00444
66666
666666 | 8888
8888
8888
8888
8888
8888
8888
8888
8888 | ပပပပ | 0404-
868888 | 44004
88888 | 44444
90000 | 90000 | 44446
800000 | 0000
8125154 | 11111 | 11111 | 11111 | | | 1.68 | A1251A |) <u>x</u> o | 88 | 88 | 40.4
40.4 | 0.62 | 1.07 | 0.6
0.56 | 11 | 11 | 11 | | | 2.280 | 30185&n
301859A | xoxo | o i o i
99929 | o404
8988 | 4444
6000
6000 | สุธกิติ | 4444 | 9000
BBBB | 1.0
1.0
1.0 | 16.0 | 15,15 | | | 3.001 | 281423A
301860A | zozo | 0.10.1
9.99.96.96.96 | 0404
9999 | นนอน
๑๐๑๑
ผลอณ | 0000
0000
00040 | 4444
6969 | 0000 | 1666 | 1.02
1.02
0.52
0.52 | 15:53 | | | 040.4 | 301850A | χo | 1.02 | 0.98 | 1.06 | 9.69 | 1.08
2.06 | 0.63 | 9.9
9.9 | 1.03 | 8.6
8.6 | | | 4.300 | 3018514 | χo | 1.02 | 860
011 | 40.1
20.1 | 0.63 | 1.0d | 0.62
0.562 | 00.33 | ਰ.ਰ
ਹ | 25.93 | | 7178-16 | 888 | 201880A
261421A | ပပ | 9.8 | 1.02
2.03 | 1.10 | 33 | 44.
889 | 0.59 | 11 | 11 | 11 | | | E | 90189£4 | p | 1.02 | 3.02 | 70.1 | 0.56 | 1.07 | ₹.° | ł | 1 | 1 | | | | | _ | | | | | | | | | | 6 C, center of thickness; N, midway between center and surface of plate. 1 All semples repaired in the -0 or -F temper from Producer A and Leatury-ty-mated to the "heat-treated-by-user" temper by Alcen Reservan Lyberstories. TABLE XIX RATIOS OF BEARING PROPERTIES TO ESSENTIES OF STREETS STREET STREET SOLVETS SOLVETS STREET STREET SOLVETS SO | 2017 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 888838 888834
19 86888 888834
19 86888 88883
19 86888 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.58
1.58
1.58 | | HISTO CO. | मुन | | 4 | e c | 30 | | | a r | | |--|--|---------------------------------------|--|----------------------|--------------|------------|------------|--------------------|---|------|------|----------|----------|------------|------------| | 11 0000 000000 00 | | | 50 £288 | 9.5. 85.55
85.55 | Įę, | 6.5 | 18: | | l | 6 | Į | 4/6 | 6 | 0 | | | 0000 000000 bi | 8566 356888 | | 1.651
889
829 | 444
868
468 | 2 | | 3 | \$5. | 20.2 | 125 | 2.0 | 1.5 | 2.0 | 2.5 | 400 | | 000 000000 bi | รูกับ จัดกัดสุล
จัดบัง จัดกัดสุล
จัดบัง จัดกัดสุล | | 444
888 | 6.5 | 2.01 | 3.18 | 1.17 | l | 1 | ı | 1 | i | 1 | 1 | ı | | | 22 22008
22 22088 | | 1.82 | 5 | 2 K | יי
מיני | 266 | | 1 1 | 1 1 | 11 | 1 1 | 1 1 | 1 1 | 1 1 | | 444444 4 | 2200888
4444444 | 346666 | | 1.63 | 8 | 1.6 |
88:- | ŧ | 1 | ł | t | 1 | 1 | 1 | ı | | | | ֡
֓
֓
֓
֡
֡ | 1.76 | 8.1 | 2.04 | 1.53 | 8.1 | ı | ſ | 1 | l | 1 | 1 | i | ļ | | 2887
2000 00
2000 00 | | านน์
บูญญา
รถเกเบ | j.76 |
879 | 96 | ر
الراب | 다.
점점 | 1 . | 1 1 | 1 1 | ! ! | 1 1 | 1 1 | 1 1 | 1 1 | | 186 8 | 88
111
88 | 111
(122) | ;
5; | 36 | 200 | ያፈ | | . į | | 1 | 1 | 1 | 1 | 1 | ı | | 3 00
3 00 | 2 | • | 6 | 15.0 | 88 | 15. | 1.84 | . | 1,79 | 1.5 | 13.1 | 17. | 1.78 | 1,1 | 121 | | 1.55 | | | 7) | 1 | | ? | <u> </u> | | } ; | , | | , | | 74 | | | | | 4 | 5.65 | 1.51 | 85 | ۲.
الأو | | ۲.
در | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | -i- | 86 | 36 | યુ
ઈટ | -i-i | 1.1
1.1 | | 22 | 1.93 | i
Ž | 1.10 | 1.
1.
1. | 38 | 1:49 | 2.73 | 9 | 1.82 | 1.47 | 1.78 | or
Or | ឆ | 1.5 | 1.75 | | 301652 N 1.64 |
 | 86 | 1.63 | 50.0 | 9:1 | 1.8
1.8 | 1, | 18 | 1+ | 18. | ik i | 1.82 | 1+ | 1.82 | | | | 78 | eg. | 965 | 75 | ,
, | 285 | } { ² , | ١٤ | 15 | ١٩ | 15 | ١ | 12 | ١٤ | | بر
در ا | | | 4.
85 | | 5 .00 | ii.
Ka | 565 | <u> </u> | 51 | 71 | 1 1 | <u>.</u> | } | 31 | | | iri
 | | - | 1.76 | 1.59 | 2.01 | 1.57 | 1.8
8.1 | 1.42 | 1.88
88 | 1.52 | r.79 | K | 1.76 | + - | 1.1 | | 261580 X 1.58 | | 1.55 | 3,85 | 8.1 | 3.02 | 35. | 1.85 | ı | ı | 1 | t l | 11 | 11 | 11 | 11 | | rir
U X | | 44 | 99 | A. | 8,8 | 7.5 | 1.8.1 | 11 | 1 1 | 1 | 1 | 1 | 1 | i | l | | | | 1 | 8 | 12. | 8 | ir. | 1.82 | 1 | 1 | 1 | 1 | 1 | 1 | ı | l | | 281597 x 1.62 | 8.
8. | S. | 81 | 81 | 33 | 4.
28 | ٠.٠
چوو | 12 | 12 | 1.1 | 1,1 | 18 | 1.1
8 | 1+ | 121 | " G, sewish wf thishmess; M, widery between earler and surface of plate. Presting uposized failed britain /vessing yield stream (2 per omet offset). Prest Prestor B. All sther from Producer A. TABLE XX NATIOS OF HEARING RROPERTIES TO TENSILE PROPERTIES OF STRESS-RILEVED STRETCHED 2024-T351 PLATE | | 国国 | 0.0
0.0 | 1 | 1 | i | ł | 1 | 1 | 1 | | ł | ł | ł | 1 | 1 1 | | 199
189 | 88
88 | 10.5 | 18 | ֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 75.7 | 11 | 1 1 | 16 | 7.07 | 1.89 | 1.97 | 1.88 | |----------------|---------------|-----------------------|--------|--|----------------------|---------|----------|------------|-----|------------|---|--------|--------|---|--|----|----------------------|-----------------------|---------------|--|--|----------|--------------|-------------|--------|------------|-----------|--------------------------|-------------| | | SIST. | 1.5 | 1 | | 1 | 1 | 1 | 1 1 | - | | 1 | 1 | 1 | 1 1 | | | 188 | 35 | 19 | 15 | 119 | 3 | H | 1 1 | 1 | ۶
۱ | 1.53 | 1.62 | 1.51 | | | | 0.0
0.0 | 1 | | ١ | i | 1 | ! | ļ | } | 1 | i | I | 1 | 1 1 | | 1.85 | 1.72 | 18 | ١٤ | <u>.</u> | 8 | 11 | 1 1 | l I | 1.02 | 1.76 | 12.1 | 1.57 | | Edgevise | 留官 | 1.5 | ı | 1 1 | . 1 | 1 | l | 1 1 | ı | } } | 1 | I | I | 1 | 1 1 | | 14.6 |
 | 15 | 16 | 19 | R. | 11 | 1 1 | H | 8 | 1.32 | 1,1 | 12 | | क्ष्म <u>य</u> | | 9°. | 1 | 1 1 | 1 | i | ł | 1 1 | , | 1 1 | ł | ł | ı | 1 | 11 | | 16.8 | %4
86 | 18 | ١١٤ | 61 | 2.05 | 11 | 1 | l I | ا
ا | 8 | 15.1 | 188 | | | | 9
2
2
2
3 | ì | 1 | ; | 1 | Ì | 1 1 | 1 | 1 1 | 1 | 1 | ì | } : | 1 1 | | 188 |
95. | 18 | , | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | ਰ
ਹ | 11 | 1 | } | 1.47 | 47 | 18 | 1.54 | | | | 10.
0.0 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | | 1 1 | 1 | 1 | 1 | 1 | 11 | | 2.1.00 | 4.1
25.7 | 18 | 19 | 3 1 | 1.67 | 11 | 1 | ł 1° | 163 | 1.67 | 12 | 188 | | | | 1.5 | 1 | | 1 | 1 | 1 | 1 1 | | 1 1 | 1 | } | } | ł | 1 1 | | i
K | નન
ક્ષ | 18 | ֓֞֜֞֜֞֜֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 01 | 7.50 | 11 | 1 | 11 | ደነ | 1.24 | 1,36 | 肾 | | | <u> </u> | 2,0 | 2.23 |)
() | 53.58 | 5.19 | 71.5 | 88 | | 79.7 | 2.06 | 8, | 2.16 | 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 38 | | 4.0.4
8.28 | %
8
8
8 | 8,8 | ic. | 34 | 2.03 | 88 | เกร | 323 | ય.
છડ્ડ | 300 | 2.5 | 2.00 | | | PAST
Trisi | 1.5 | 1.78 | יי
טמי | 11,00 | 8 | 6.5 | 35.75 | | 1987 | 1.72 | 1.74 | 5.79 | 1.41 | i.
58 | | iiii | 9:i. | 4.78
85. | 1.7 | | 4.
8. | 1.86 | | 32:1 | 4.5 | ::
:8 | 1.75
25.00 | i44
88 | | | | 0.0 | £, | 36 | :::
::: | ន | ۲.
وز | 33.
36. | | No. | 8 | 1.36 | 36. | .i. | | ě | નન્
યુલ્સ | 98
88 | 1.02 | :
:3: | i.
186 | 7.85 | 56 |
191 | 86. | ц.
53 | 32 | 999 | 144
189 | | 25.00 | SING
SOF | 1.5 | 66. | ₫;
-i, | , r. | 100 |
?} |
55 | | ۲.
برير | : -
}ር | , v. | 1.59 | ,
50, | 1.52
1.52 | , | નું પુ
કુજીઉ | 1.5% | 4.
87 | 12 | 1.56 | 7.49 | 1.59
60,0 | 14, | 425 | ٠.
43 | 7.4 | 4.
4. | iri
K | | Plater | BYS(L) | 000 | 47.2 | 20,10 | รูส | 2.15 | 2.10 | | , , | 90
20 | 9 | 80.0 | 2.03 | ٥ <u>٠</u> , | | ; | જુનું પ્
88% | 14.
19.5 | 4.5. | 10, | ;.
94 | 8 | 2.19 | រ
រ
រ | | 4.
88 | % | 900
000
000
000 | 94.4
948 | | | HYS | 100 | 1.72 | 100 | 3.60 |
8.1 | 1.78 | 85 | | 1 C | 1.76 | 1.7 | 1.74 | i. |
8.8 | į | 246 | 9.C | 1.78
83.48 | 125 | 32 | 3.68 | 1.82 |
 | 1:25 | ri. | .52 | ų,
Už | 856
856 | | | BUS (L.) | 200 | 86.1 | d' | 3.5 | 1.95 | 1.87 | 36 | 1 | -1- | , r. | 1.85 | e
G | ٠.
8 |
8.8 | ! | 44.
84.3 | 44
48 | 1,3 | 16 | 56. | 1.81 | 4.
88 | | | 88 | 1.
87. | 4.
8. | :
:35 | | | | 25. | 1.59 | 3,1 | ביר
הייני | 1.59 | 7.54 |
26 | } | 7.5
 | /ይ | 1,52 | 1.54 | ٠.
دي: | 7.0 | |
 | i
i
i
i
i | 1.55 | | | 1.46 | 13.
13. | 180 | , | 2 | 14 | ٠.
دري | | | | | Loca- | O | o |) () | 0 | ပ | င်င | | | | | | - | ပပ | | ၁၀၀ | | × |) X: | ပ႓ | ပ | ×C |) X (| :x: | (C) | ξO | 3 00 | ×ο | | | Sample | | 252464 | 34150
150
150
150
150
150
150
150
150
150 | 250 | 2013/4 | 301839 | | | 35 | ##500100
1000000000000000000000000000000 | 281489 | 201703 | 281369 | \$ 120
\$ 120 | ١. | 291279 | 281.375
251.697 | 301845 | 301819 | 38448185 | | 281581 | 281598 | 301782 | 08486 | K+)102 | 201848 | 301846 | | - | Sen | 2003,
th. | 0.250 | 9;
N | ()
()
()
() | 0.312 | 0.373 | 500 | | 86 | 100 | 9 | 0.730 | 0.750 | 88 | | 46.5
48.5
48.5 | 11.
188 | 1.930 | 2.000 | %.
00. | | 2.001 | 2.250 | 2.250 | | K.7. | 8
8
8
8 | 2.00 | * C, center of thickness; M, midway between sonter and sufface of plate. TABLE OF BEACHED PROFESSION OF STRESS-FELIEVED STREAM PROFESSION OF STREET, FOR FO | | ms(m)
ms(m) | 2,0 | | | | 1.72 | | |---------|--|--------------|----------------------------------|---|---------------------------------------
--|---| | | | 2.0 1.5 | | | •• | 11116 | | | ed by | 1) 504 | 6.1
6.5 | | | | | | | Edge | (TI) STA | 5 2.0 | | | | 11114 | | | | a la | 1 | | | | 1.72 | | | | Sept | 1.5 | 11111 | 1111111 | اينين | 111112 | | | | 12 (元) | 0.0 | 1.386
1.738
1.748
1.748 | | 4446 | 4444444
88 <i>668</i> 848 | | | | in in | 6.5 | uuuuu
Kivaiva | प्यम्प्त्
१९५३१९५५३ | 4444
4454 | ૡૡૡૡૡૡ
<i>ૡ૾ઌ૽ૢ</i> ૹ૾ઌૺઌ૾ઌૺઌૺ૱ | | | | Stra | 200 | 88889 | ૡૡૡૡૡ
ઌૺૹૹૡૹૹઌ | 4444
888 | 44444444
888828244 | | | 98 (24) | | 10.1
0.1 | uuuuu
Viisisisis | นนนนนน
เร่งให้เง้าให้เง้า | प्पंत्त्व्य <u>्य</u>
प्रद्रप्रद्य | प्रमुख्युक्त स्टब्स्
क्रिक्टिक्ट्रि | · | | TACT | BYS(L). | 20.0 | 44488 | 444444 | 4458 | 48848 | | | | 78 | 1.5 | 4866 | ૡૡૡૡૡૡ
ૹૹૹૹૹ | મુવાયુ
જેજીજુ | <u> </u> | | | - | 08(1.) | 8.0 | %
%
%
%
%
%
% | ઌૡૡૡૡૡ
૱ૹૹૹૹૹૹ | મુમ્યુપ
જુજૂજુ | ૢૡૡૡૡૡ
ૹૹૹૹૹૹ | | | | 903 | 25: | | નનનનનન
ઉજસજજજ | प्पप्त
स्थायक | तंत्रतंत्त्वतः
इत्तर्द्वतः | | | | | loos
tien | 00000 | 000000 | ងបងង | KOKOKOKO | | | | 91 | Producer | | 2000 000 000 000 000 000 000 000 000 00 | ARRA RESERVE | 240.590
240.60.5
301783
2401750 | | | | 200 | 12.5 | 24H38 | 99997559
88425688 | 25%8
25%8 | 2.250
2.250
2.250 | | • C, sector of thiskness; M, midway between sector and surface of plate; † Bearlag species failed before resabing yield stremeth (2 per cent elimit), ** From Producer B; all ethers from Freducer A. MATIOS OF BEARING PROFERENCE TO TENSIES PROFERENCE OF STRESS-FELLENCE STREAMED TO S-T-651 | | | | | | | | } | |-------------|--|--|--
--|---|--|---------------------------------| | | (E) | | 111111 | 444 14
144 14 | | | 5.7.1
5.1.1
5.1.1 | | | 77.
1.5 | 11111 | 111111 | Add d | ធ្វើធ្វើធ្វើ | | 31. | | | (E) | 11111 | 111111 | 365 16 | | 1.18
1.14
1.76 | 57.1
67.1 | | :te | 1.5 | 11111 | 111111 | 144
183
183 | | | 1.37 | | 9353 | -4/8
(<u>187</u>
(2) | 11111 | 111111 | 352 8
1111 1 | 13,14,12,15 | 12,12,13 | 1.1
2.1 | | | 1.5 | 11111 | 111111 | 24.41.5 | 6 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1:45 | 1.46 | | | | 11111 | 111111 | 444
888 18 | | 1:16 | 1512 | | | SEE TO 1 | 11111 | 111111 | 445 15 | | 1.36
1.56
1.51 | 1.32 | | | EE ST | Aunco
edeled | १११त
११ | nopau
dedeid | अक्षार कननाः
अक्षार कननाः
संसंस्थितिस्स | Segretaria
Regress | <u> ಇಕ್ಕಾಗ</u>
<u>ಆಗ್ರಭಾ</u> | | | SEE ST | uuquu
istivadi | चन्त्रसम्बद्धः
चन्द्रसम्बद्धः | uuuuu
44404
4400 | uninininini
Proprincina | નન્ન્ન્ન
જોકાયુક્ક | auuu
onga | | | 1 6 %
1 5 5 6 % | માનાના
જણાવાલ
જાણાવાલ | quadad
Kolikhii) | uqqqq
babasa | ામનામાં
ઉદ્યુપ્ત જાણકૃષ્ણ | eininge
Signings | વવવવ
કથ્છે | | 15. | 15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5 | maning
maning | ungwyd
Gwydd
Gwydd | तान्त्रक
तान्त्रक
तान्त्रक | นนนนนนนน
เม่นเกาะลดร | uuuuuu
Waxaay | uuuu
Vaar | | Vinty. | 39 | aradii
Menidi | 444444
8628864 | 44444
450006 | 44444444
86648464 | 2002000
5000000000000000000000000000000 | 4444
86348 | | | (1) SAL
(2) SAL
(2) SAL
(1) SAL
(2) SAL
(2) SAL
(3) SAL
(4) SAL
(5) SAL
(6) SAL
(7) SAL
(7) SAL
(7) SAL
(7) SAL
(7) SAL
(8) SA | ज्ञानक १५
प्राक्षेत्रक १५
निर्मालन | अन्यक्षत्र
नेतननेतन | ्राध्य १५५
प्रमुख्य
संस्थित | ઌ૱૿ઌઌ૱ૡ
ઌ | งกลายศ
ค่ะค่ะค่ะค่ะค่ะค่ะค่ะค่ะค่ะค่ะค่ะค่ะค่ะค | વવવવ
વહેરાંથું | | | (1) SM
(1) SM
(1) SM
(2) SM
(1) SM
(1 | वार्यसम्बद्धाः
वार्यसम्बद्धाः | uququq
magrom
magrom | andan
gozine
gonese | સ્વાનાનાના
કુરુંકુકુકુનુંકુકું | andana
Brooker | ૡૡૡ
ૡૹૢ૽ૡ | | | EUS
STATE | Heidide
Boarps | น่านุนนุน
ลูกัสสุกัน
ลูกัสสุกัน | 94504
44404 | નન્નન્વન્
ઇપ્રવેગ્રહ્યું | 4444 | 4444
90544
5409 | | | 1881 | ဝဝဝဝဝ | 000000 | 00020 | KOKOKOKO | zozozo | *O*O | | , 48 Amount | Somple
Itember
and Itemper | 2016
2016
2018
2018
2018
2018
2018
2018
2018
2018 | 2000
2010
2011
2011
2011
2011
2011
2011 | 201207
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
201350
20 | 231502#:
231417
231654##
2314.1 | 301894
301897
231491 | 281430
281684 | | | Thick- | 1 | 000000
200000
200000000000000000000000 | 2000
2000
2000
2000
2000
2000
2000
200 | 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | 2.5
12.5
17.5 | 3.025 | • 6, conter of thickness; M, midway betwen contor end curface of plate. 1 Biaring specims failed before magning yield stress (2 per cent offset). 1: From Producor H; all others from Producer A. TABLE XXIII RANTOS OF EGAEDIG PROPERTIES TO TENSILE PROPERTIES OF STRESS-FELLEVEL STRETCHED 7079-1651 PLATE • 6, conter of thickness; M, midway botween center and surface of plate. † Hearing specimen falled hofore reaching yield stream (2 per cent offset). ** From Producer B; all others from Producer A. TABLE XXIV RATIOS OF EXALTY PROPERTIES TO TENSILE PROPERTIES OF STRESS-RELIEVEL STRENGED 1778-7651 FLATE | | 1 |-----------------|--|---|-------------|--------------|---------|---------|---------|---------|----------|-----------|-----|---------|------------|----------|---------|--------|----------|------------|----------|---|---------| | (12) | 100
100
100
100
100
100
100
100
100
100 | | 1 | 1 | i | 1 | ; | i | ı | i | | 1 | 1 | ł | } | ł | 1 | 1.67 | 1 | , | 8 | | | 1.5 | | ! | i | ; | 1 | ł | 1 | ł | ł | | 1 | ; | 1 | 1 | 1 | i | + - | 1 | | | | (31) | (1)
(1)
(2)
(3) | | ł |
l | ţ | ; | 1 | 1 | ; | i | | i | 1 | 1 | 1 | 1 | } | 8 | í | ; | A
i | | Edzeutse
Edz | 1.5 | | 1 | l | l | ţ | ļ | 1 | ; | 1 | | i | i | 1 | ł | 1 | ; | 8 | 1 | 1 | 1.17 | | (1) | 1300 | | ł | 1 | 1 | ! | 1 | 1 | 1 | 1 | | 1 | 1 | i | 1 | 1 | 1 | ۲.
8 | ! | 1 | 1.T | | | 1.5 | | 1 | ! | ; | ł | l | 1 | 1 | 1 | | 1 | ; | ŀ | 1 | 1 | ŀ | 1.47 | 1 | | 1.33 | | (1) | (1)
(2)
(3) | | ł | 1 | ; | 1 | 1 | 1 | ŀ | Ì | | 1 | 1 | 1 | 1 | 1 | ł | 2.40 | i | | 1.63 | | 18 | 1.5 | | I
 | l | ! | 1 | 1 | 1 | ! | ! | | ; | ! | ! | 1 | ŀ | ı | %
~ | , | | ન
જ | | S(12) | (E) 20.2 | | | \$. | 3 | ٠.
8 | 46.4 | 7.1 | ٠.
9 | 1.82 | , | ٠.
9 | 7.75 | 1.72 | 1.75 | 2.73 | 1.78 | પ
જ | r.8 | | 1.75 | | AG. | 15.5 | | 7,0 | אָנְי
היי | ٠.
ر | iy. | 19:01 | 1.5 | 1.5 | ٠.
ئزن | , | 7.40 | رن
نائز | 4. | 55.4 | 1.46 | 94.1 | H. 473 | 7.45 | : | 년
計 | | (31)8 | 7.5
2.5
2.0 | | i
i
i | 3 | -i
8 |
8 | 1.97 | el
S | 8 | 7.89 | | 1.74 | 1.86 | 20. | 1.79 | 1,93 | ۲.
چې | 1.72 | 8 | | 1.72 | | atri se | 1.5 | 1 | 4,0 | ()
 | 'n, | 1.56 | Ĭċ, | 1.53 | 7.57 | 1.54 | | 7.42 | 1.51 | ٠.
دې | S. | લ | ч.
Щ | 1.46 | 1.46 | • | 다. | | E | S(正)
2.0
2.0 | 1 | 7.T | بر
در | 3 | ц
3 | 6 | 1.7 | ۲.
8) | ્ર
જ | | 1.72 | 1.70 | .68 | 20.1 | 3 | 1.75 | 5.50 | 1.69 | | 1.73 | | 1 | 775
9/5- | 1 | ri. | 3, | ٠.
5 | ر
1 | 1.63 | 1.49 | 1.56 | 1.53 | | 7.45 | ч
;; | ##.
H | 4 |
 | 7.47 | ۲.
س | 1.
J. | • | 1.46 | | S(t) | | | (f) | Š | 8 | 3 | 6. | 6 | 6 | 9 | , , | 4 | ال
ال | લ | ۲.
د | 1.79 | 4 | 1,86 | 4
8 | | 1.74 | | | 1.5 | | | | | | | | | 1.54 | | 3.5 | ٠.
بر | 7.47 | 7.47 | 3.45 | 64.1 | 1.47 | 1.45 | | ₽
-i | | | Icea-
tion | | 0 | υ | U | O | 0 | U | Ç | 95 | | | | | | ** | | U | | | ပ | | Sample | liumber
and
Froducer | | 10,50 | 801415 | 301835 | 301361 | 281501: | 613 | 0 | 201737404 | | 251780 | 2316634 | 281415 | 857,158 | 30177# | 8777 | 251777 | 281657** | • | 87126 | | 5 | Thick-
ness, | | ß | ຜູ້ | 516 | ą | 212 | ç | 13.5 | 0.435 | | .50 | 0 | 50 | 50.0 | 530 | 0.750 | 8 | 200 | , |
8 | • G, conter of thickness; M, midway between center and surface of plate. † Bearing spacimen falled before seaching yield atreas (2 per cent offset). ** From Producer B. *** From Producer C. -- CONCENTED ON MERE YAGE- TABLE XXV RATICE OF BEARING PROPERTIES TO TERRIES PROPERTIES OF PLAIN OF SEVERAL ALMETRIN ALLOYS IN THE "REAL-TREATED-BY-USER" INFER | | | | | | | | | | | | | | | | Priority | 1 | | | | |------------------|---------------------------------|----------------------|-------|--------------|------------------|--------------|-------------|--------------|--------------------------|--------------|--------------|--------|------|------------------|----------|----------|------|----------|-------------| | | | | | | | | 1 | 2 | | Ì | | | | | 3 | | | The same | 1 | | W. C. C. | 700 | t of the | | | 重 | S I | | | 語 | | | | F | | 担 | | 亩 | | | | Tennat. | mess,
in. Reabs | Manher | Local | 1.5 | 0.0 | 1.5 | 30.2 | 3.5 | 200 | 6.2 | 600 | 52 | 80°. | 15.5 | 20.2 | 15.5 | 0.2 | 1,5 | 2.0 | | 2014-76 2 | 0,312 | 2813641 | ပ | 1.6 | 2.05 | 2.65 | なべ | 1.6 | 2.04 | 1.6 | 1.97 | 1 | ١ | 1 | 1 | ı | 1 | 1 | 1 | | | 0.550 | 280.365A | υ | 1.54 | 1.97 | 1.52 | 1.76 | 1.56 | 2.98 | 1.52 | 1.79 | ı | 1 | 1 | 1 | i | ı | i | 1 | | | 1.001 | 2813664 | ເ | 2.50 | 9.1 | 1,33 | 1.69 | 4.5 | 1.93 | 1.45 | 2.73 | 1.33 | 1.74 | 1.42 | 1.68 | 1.27 | 1.73 | • | 1.68 | | | 2.500 | 260.547.A | ×o | 7.53 | 44
88 | 1.56 | 58
88 | 1.57 | 1.98
1.92 | 11.
52.4 | 48° | 17.1 | 1.78 | 1.47 | ابر | 14 | 1.78 | 94.1 | 2.78 | | 1024-142 | S
S
S
S
S
S
S | 281.4754
281.3784 | ပပ | મુન
સુદ્ધ | 1.38
138 | 1.88 | 2.05 | 44
84 | 44
88 | 1.82 | 88 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | | 1.001 | ATTEM | υ | # | 1 8:7 | 1.67 | 2.07 | 1.53 | 1.92 | 1.17 | 2.00 | 3.36 | 1.7 | 1.11 | 2.15 | #:1 | 1.82 | 1.1 | 2.02 | | | 2,001 | 3603T2A | χO | 1.52 | 1.73
2.73 | ਜੂਜ਼
ਬੁ8 | 25.
8.3. | 45.4 | 1.88 | 7.
55. | 1 28 | 1.8 | 1.74 | l _t t | 188 | IA. | 1.72 | 点 | 12 | | 2021-T6 | ង្គី | 201,173 | ບບ | 44
88 | 88
88 | 1.1.
128 | 88 | 1.66 | 21.2 | 39:i | 2.3 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | | 1.001 | 807773B | ပ | 1.59 | 2.02 | 1.66 | 1.96 | 1.59 | 2.01 | 1.63 | 1.93 | 1.42 | 1.86 | 2.58 | 1.95 | 1.78 | 1.75 | 1.59 | 1.8 | | | 2.901 | 360.7728 | χU | 98.
88. | %4
88 | 1.59 | 88 | 4.5
85.5 | 2.5
2.5
2.5
3.5 | .i.
28 | 11. | 12. | 18 | 1.54 | 18. | 1,4
8 | T-7 | 1.52 | 183 | | 7075-26 | 275 | ASSESSA
ASTRICK | .00 | i.i.5 | 1.92 | 44
84 | 1:8 | 1.57
5.59 | 44
88 | 525 | 1.80 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | | 0.6 | Str. Mark | υ | 3.50 | 3.88 | 1.52 | 1.74 | 1.56 | 1.89 | 1.53 | 1.76 | 1 | 1 | ı | ı | ŀ | ı | 1 | 1 | | | 3.500 | 2613864. | υ | 1.45 | 27.1 | 1.42 | 1.63 | 1.47 | 1.78 | 1.43 | 7.68 | *** | 1.69 | 1,41 | 2.58 | 1.27 | 27.2 | 1.39 | 1. 8 | | | 0
2
3 | 281.78c. | χυ | 44.
53. | 4.4
8.4 |
 | 458
88 | ų
ga | 4.88
8.88 | 1.54 | 1.8 | 14. | 1.78 | 1.1 | 1.67 | पुर | 17 | 1.42 | 1.0 | | | 200.5 | 2013634 | KON | 444 | 888 | 444
448 | 44.0 | નનન
જોઈફ | 886 | rigi
Rigi | 44.5
66.5 | 12 | 1.72 | 121 | 181 | 121 | 171 | 171 | 1,51 | | | 1 | | (1) | , i.i. | 1.83 | iri
KX | 1:42 | 5 , | 38: | 1.55 | 2,78 | ት
አ | 1.69 | 1.45 | ન
જ | ሂ | なれ | i. | たれ | | | 3.80ì | SELDETA | χυ | 41.
48 | 86
86 | મું
ક્રજ઼ | 4.00
378 | 44
88 | 25.05
1.99. | 44 | 83.
63. | 121 | 1.72 | 12. | 2.12 | 2.39 | î.r | 1.45 | 1.70 | | | | | | | | | | | 444 | | | | | and and and | 9 | 3000 | ١ | | | PARCE XXV (CONCINIED) RATIOS OF BEARING PROFERIES TO EXISTE PROFERIES OF PLAIN OF BEVERAL ALBUCKOM ALLOIS IN THE "ZEAL-THRAISD-BY-UNSA" TEMPER | | | | | | | | ** | Latvine | | | | | | | Edgevise | vi se | | | | |---------|----------------|--------------------|------------|---------------------------------|--------------|-----------------|-----------------------|---------------------|--------------|------------------|--------------|------------|------------------|-----------------------|------------|-------|---------------------------------------|---------|----------| | A33 or | Serolet Thick- | plet | | | | STE | | SDE SDE | 葩 | | | SOT
TOS | 3 | SIS | | E CO | | SE SE | 直 | | reger | 100 E | Product | 110 | S. C. | 200 | 1.5 | 200 | 1.5 | 200 | 123 | 800 | 5.5 | 200 | 15.5 | 90.
10. | 1.5 | 200 | 1.5 | 60° | | 7079-16 | 0.252 | 280 kgs | ပ | 18 | 2.
2. | | 3.50 |
8: | 53 | 1.63 | 1.92 | ı | 3 | 1 | 1 | ı | 1 | 1 | ı | | | 191
191 | | ၁၀၀ | 3173 | 34.8
34.8 | કૃત્યું
નુન્ | 988 | -
บูญี่
บูญี่ | 23.5
23.8 | 444
872 | 4.4.
83.8 | 1-1 | 1.18
88.4 | 44.1 | I L | 84.1 | l
F | 12.5 | 185 | | | 2500 | NA CHIEF | ပ | 1.57 | 8 | ۲.
لا | 1.72 | ۲.
ادا |
8/ | 4 | 20 | ::
33 | | ::
: | 1:72 | 11. | 1.86 | 11 | 18
11 | | | 1.68 | 261,391A | XO, | 44
528 | 44
88 | 4.68
8.68 | 1.78 | 8%
નંન | %
% |
529
1.199 | 44.
84. | 14. | 1.79 | 1.45 | 1.6 | 84.1 | 2.79 | 17. | 1.68 | | | 2.280 | 301858A | X C | 16. t | 88 | 99 | 3,8 | ٠.
جوڙ | 2.06 | ÇÇ. | 81 | 1 | الم | 1, | ا | ľ | 1 | 15 | 1 | | | 2.500 | 301359A | ×o | i
i
i
i
i
i
i | ; %;
;8% | ાં
કહ | i.i.i. | 13 l | ង្កែង | ાના
લક્ષ | 181 | | 3,4 | 113 | 3 15 | ğığ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 13 | 312 | | | 7.001 | 201124 | X C | 1, | ٠.
د | 1.57 | 1.76 | 25 | 88 | 4.
80. | 72.1 | ľ | ١٥ | 1 | 13 | 1, | · į | ť | T, | | | 7.000 | 301360A | ×c | માં તે
સંદેશ | | 124 | 1
1
1
1
1 | 144
185 | 10'4
48'E | 144
200 | | ; 1; | 3 1 ² | :
5 2 | | ٷٳڴ | | ٩
١٦ | | | | 4.040 | ADJB50A | χU | तंत्र
इष्ट | 84. | જો | 1.32 | 4.4
9.4 | 8.8
8.8 | 44
54 | 1:32 | 12. | 1.76 | 94.1 | 1.72 | I. | 1.1 | 17.1 | 1 H | | | A.800 | XIIBSIA | #O | 45. | 5.5
8.8 | 11.
68 | 38 | 1.52 | 2.08
58.4 | 1.5.1
5.5.1 | 11.38 | 1.42 | 1.78 | 14. | El E | 17. | 1.79 | 14. | 1.72 | | 7178-16 | 888 | 301880A
281421A | ပပ | 44
88 | યુપ
જુષ્ટ | 44
88 | 83
44 | 1.38 | નુન
8ફે | લ્યું
કહ્યું | 44
88 | 11 | 11 | 11 | 11 | 11 | li | 11 | 11 | | | 0.633 | NOTEN SA | Ü | 7.47 | 1.8 | 1.43 | 39: | 2.48 | 1.75 | 1541 | 58: | 1 | 1 | i | 1 | ı | l | Į | 1 | Bearing apeciann failed before reaching yield strummin (2 per cent affact). A semilar bread-offed in the -0 or -? temper from Predocer A and heat treated to the "heat-treated-by-une-r" super by Alexa Research Indernateries. C, semier of thickness; M, miney between semier and surface of plate. TABLE XXVI AVERAGE RATIOS AMONG TENSILE, COMPRESSIVE, SHEAR AND BEARING PROPERTIES OF 2014 PLATE | | | | | | | | | BUS(L or I | r 117) | EXS(L or I | T IT) | |--------|--|-------------------------|----------------|--|---|---|---|-------------------|----------------------------|-----------------|--------------------------------------| | Temper | Thickness
Range,
in. | Number
of
Semples | TUS(L) | $\frac{\text{TYS}(L)}{\text{TYS}(LT)}$ | $\frac{\mathrm{CYS}\left(\mathrm{L}\right)}{\mathrm{TYS}\left(\mathrm{LIT}\right)}$ | $\frac{\text{CYS}(\text{LI})}{\text{TYS}(\text{LI})}$ | SS(Av)
TS(III) | e/D= | e/D=
2.0 | e/D=
1.5 | e/D=
2.0 | | | | | Tests | ដូ | Contract A | AR33(651)-1831 | 7837 | | | | | | -r651 | 0.000-0-099
0.500-1-000
1-001-1-500
1-100-1-000 | 40 000 | 0044-
88699 | 4444
6 9 000
6000 | 40440
888998 | 400000 | 00000
000000 |
95500 | 40.000
40.000
40.000 | 111111
20005 | 11111
867
87
87
87
87 | | - TG | | | | 8886 | | | | | 0.4.4.4
48.00.00 | | • • • • | | | | | | , | MII_HDBK-5 | ᆔ | | | | | | | -T6 | 0.500-0.499
0.500-1.000
1.001-1.500 | | 44444
44888 | 44444
88888 | 44444 | 4444
00000
000004 | ଦ୍ର ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ | uuuuu
viikikit | 4444 <i>0</i>
88848 | 다니니니
장하다라당 | | | (| 1 | , | | | | | | | | | | * Heat treated by user. † For -T651 temper, ratio may be lower. * At location stated in specification for tenzile properties. TABLE XXVII AVERAGE RATICS AMONG TENSILE, COMPRESSIVE, SHEAR AND BEARING PROPERTIES OF 2024 PLATE | | 用わずらから | Mimber | | | | | | BUS(L or | or III) | BYS(L ; | or III) | |--------|--|----------|-------------------------------|-------------------------|--------------------------------------|-------------------------------|---|----------------------|--|----------------------------------|---------------------------| | Temper | Range,
in. | Semples | TUS(L)
TUS(LL) | 73 (T | 回回 | | SS(Av)
TS(LT) | e/D= | e/D=
2.0 | e/D=
1.5 | e/D=
2.0 | | -1351 | 0.250-0.499
0.500-1.000
1.001-1.500
1.501-2.000 | യയ പ്രഹര | Tests
1.02
1.03
1.03 | R LILITA | Contract And O.93 | 1:07 | 500000
5000000000000000000000000000000 | uuuuu
Brovii | 44444
666
666
666
666
666
666
666
666
6 | 45.11
17.65
17.65
17.65 | 999999
899999 | | -T42* | 0.250-0.499
0.500-1.000
1.001-1.500
2.001-3.000 | нннн | 4401
0000
0000 | 1.007
1.002
1.001 | 1.08
1.07
1.07 | 44.06
1006
1006
1006 | 0000
8689 | 4444
4444
4444 | 4444
4888
4884 | 11.13 | 8048
8048 | | -1.62# | 0.250-0.499
0.500-1.000
1.001-1.500
2.001-3.000 | 러하러러 | 444.0
10.00.0
10.00.0 | 11.02
0.100
0.99 | 1111
0000
0400
0400 | 1111
0000
04000 | %888
%888 | 4444
8878
9878 | 99999
9999
9999 | 44.00.00
6.00.00 | ouiuu
oogoo | | -T851 | 0.250-0.499
0.500-1.000
1.001-1.500
2.001-3.000 | ろてせせ | 4444
4066 | 11.00.1
100.11 | 10.11.0 | 1.02
1.02
1.00
1.00 | 00.57 | ユユユユ
いうらう
でのな | 4444
89999999999 | 4444
80844 | 11.1.1
197.79
18269 | | ተፈ- | 0.250-0.500
0.501-1.000
1.001-2.000
2.001-3.000 | 1311 | 1.02 | 1.05 | MIL-HDBK-
0.95†
0.95†
0.95† | را
1.08
1.05 | 9.00 | נינים !
גיניני | 44.69 | 555 | 1.75 | | -T42* | 0.250-0.500
0.501-1.000
1.001-2.000
2.001-3.000 | 1111 | 4444
8888 | 4444
8888
8888 | 8888 | 4444
8886
8886 | 0000
8884 | યન્
છેછેછે | 4444
4888 | ユニュュ | ন্ন্ন্
এএএএ | | | 74 | | | | | | | | | | | ^{*} Heat treated by user. † For -T351 temper, ratio may be lower. ‡ At location stated in specification for tensile properties. TABLE XXVIII AVERAGE RATICS AMONG TENSILE, COMPRESSIVE, SHEAR AND BEARING PROPERTIEST OF 7075 PLATE | or III)
(III)
e/D=
2.0 | | 444444
64769 | - 111111111111111111111111111111111111 | | uning
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wa
Wanda
Wa
Wanda
Wanda
Wanda
Wa
Wanda
Wa
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wanda
Wa
Wanda
Wa
Wanda
Wa
Wanda
Wa
Wa
Wa
Wa
Wa
Wa
Wa
Wa
Wa
Wa
Wa
Wa
Wa | |--|------------|---|--|------------|---| | BYS(L or TYS) | | uuuuuu
K#8848 | הנתקוקו
ממקיניט
ממקיניט | | 다 | | (L or III)
TUS(II)
= e/D=
2.0 | | નનનનન
કુલ્ફુજુશુલુ | 44444
64444
74444
74444 | | 44444444444444444444444444444444444444 | | EUS (L
TUS
e/D=
1.5 | | uuiuuu
404846 | uuuuu
vivaiviva | | 4444444
4444444 | | SS(Av)
TS(LT) | 1-7857 | 000000 | 000000
000000
000000 | | ୦୦୦୦୦୦
ଉଦ୍ଦର୍ଜନ୍ନନ୍ଦନ୍ଦନ | | (TYS(LIL)
(TYS(LIL) | AF33(657). | 40.00
1000
1000
1000
1000 | 444444
8000000
80045000 | Ü | 444444
222222
2222222 | |
CYS(L)
TYS(LF) | Contract A | 444000
000000
0000000 | 444404
000000
000000 | MIL-HDBK-5 | 444444
000000
4444444 | | TYS(L)
TYS(LF) | a on | 4414469
4414469 | 400004
9000000
40000000 | | 4444444
9000000
9000000 | | TUS(L) | Test | 044000
999988 | 004004
886899 | • | 444444
6006688 | | Number
of
Samples | | ろるヤヤシン | ดนนนดน | | 111111 | | Thickness
Range,
in. | | 0.250-0.499
0.500-1.000
1.001-2.000
2.501-7.000
7.001-4.000 | 0.250-0.499
0.500-1.000
2.001-2.000
2.501-3.500 | | 00019999999999999999999999999999999999 | | Temper | | -r651 | - 1 6* | | -# - | * Heat treated by user. # For -T651 temper, retio is 1.00. † At location stated in specification for tensile properties. TABLE XXIX | | | 1 | | | | | | | _ | | _ | | | | | | | | |------------------------------|-----------|----------|---------|------------------------------|-----------|----------------------------|--------------|---|--|------|--------|---------|--|--------|---------|------|-------|----------| | | E LI | 200 | | цц, | | • • | | | 100 H | | • • | | цч
7.00. | • • | • | • (| • | , | | PLATE | /I IK | 1.5 | | чч
ĽŴ | | | • • | | iii
iii
oo c | • • | • • | | цч
йй
ги | | | | | | | # OF 7079 | 유
대라 e | 5,0 | | 499
898 | 50 | ဝံတံ | 100 | (| 44.
48. | 500 | 0 | | 4.82
282
282 | | • | • | • • | • | | PROPERTIEST | US(L | 1.5 | | | • • | • • | | | | | • • | | 다.
건설
건설
건설 | • | • | • | • > | • | | BEARING PF | SS(£v) | TS(IL) | -7837 | 000
1000 | 900 | 0
0
0
0
0
0 | 00
00 | | 000
000
000
000
000
000 | • • | • • | | 00
68 | • | | • | • • | • | | SHEAR AND B | CYS(LF) | TYS(LT) | 35(657) | 1.06
1.07 | • • | • • | • • | | 11.00.00
0.00.00 | • • | • • | رن
ا | цц
20. | o c | 90 | o c | 000 | , | | • | CIS(I) | TYS (LF) | 61 | 1.00
1.00
1.00
1.00 | | | | | 0.00
0.00
0.00 | . , | • • | 近了一把一下 | 1.00
1.00 | • | | • | • • | • | | COMPRESSIVE | TYS(L) | TIS(II) | ts on | 1.02 | | | 1.05
1.05 | | 400
900
900 | ùòic | ùà | | 11.00.00.00.00.00.00.00.00.00.00.00.00.0 | • | • • | • | • • | • | | Tensile, | TUS(L) | TUS(IT) | Tes | 400 | • • | • • | | (| 900 | ينمن | ນ້ວ່ | * | 1.01 | o, c | 90 | o, c | ,0, | 9 | | S AMORG | Number | Semples | | ~ α | ળ ભ | CU CU | I ~ | i | ת) רין (| אטי | -11 | | 1 1 | 1 (| . 1 | ı | 1 1 | ı | | AVERAGE RATTOS AMONG TENSILE | S S | int. | | 250-1.
501-2. | . 501-12. | 0.4-100
8-100 | יטיס | | r
S
S
S
S
S
S | 100 | .501-5 | | SS | .501-2 | 501-106 | | 501-5 | 501-6. | | | | Temper | | -1651 | | | | Š | *94- | | | | -r6 or
-r651 | • | | | | | * Heat treated by user. † At location stated in specification for tensile properties. TABLE XXX AVERAGE RATIOS AMONG TENSILE, COMPRESSIVE, SHEAR AND BEARING PROPERTIES OF 7178 PLATE | | 1 | | | | | | |--------------|---|----------------------------|---|--------------|------------|---| | (L or LT) | e/D=
2.0 | | 1.85 | 4.6
8.6 | | uuu
Rini
Sini | | BYS(L or LIT | e/D= | | 1.56
1.46
1.45 | 1.62
1.42 | | 4.32
5.4
5.5
5.4 | | Or LT) | e/D=
2.0 | | 11.33 | 1.36 | | 444
888 | | BUS(L or LF) | e/D=
1.5 | | 444
865 | 1.56 | | 999
144 | | | SS(Av)
TS(LL) | -7837 | 000
000
000
000
000
000 | 0.68 | | 888 | | | $\frac{\text{CXS}(1II)}{\text{TYS}(1II)}$ | F33(657) | ччч
9099 | 1.08 | ᆔ | 444
2000 | | | $\frac{\text{CYS}(L)}{\text{TYS}(L\Gamma)}$ | cm Contract AF33(657)-7837 | 14.0
60.00
60.00 | 1.11 | MIL-HDBK-5 | 1.014 | | | $\frac{\text{TYS}(L)}{\text{TYS}(L\Gamma)}$ | 1 1 | 11.00.0
00.05
00.05 | 1.04 | , | 1.00.1
1.00.1 | | | TUS(L) | Tests | oчч
9000 | 1.00 | | 888 | | | Number
of
Samples | | യയപ | ИH | | 111 | | 1 | Thickness
Range,
in. | | 0.250-0.499
0.500-1.000
1.001-1.500 | 0.250-0.499 | | 0.250-0.499
0.500-1.000
1.001-1.500 | | | Temper | • | -1651 | *94- | | -16 | ^{*} Heat treated by user. † For -T651 temper, ratio may be lower. * At location stated in specification for tensile properties. TABLE NOTICE COURSESTY, SHAR AND FLATICE HEALTH'S PROPERTIES OF STRESS-WELLIVED STREETED 2011-7651 FLAIR | | P 110 | 48829999999 | £ | ı jæ | , m | H. | |---------|--|---|----------|-----------|---------------------------------------|-----------------------| | | 問題 | 3 | 9 | 0.995 | o.soefa | (e. 8) | | | 題題 | പപ്യസ്ത പ | 39 | d | 1200 | 1.01 1.02 0.987 1.038 | | | हान् | # MUNATURA | 13 | Ø | 8# ₹0 ₩°0 | 0.987 | | | BEE E | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13 | 1.04 | 0.0027B | 1.038 | | | Retio | ୧୧୯୧୧୧୧୧
ବ୍ୟୟସନ୍ତ ଝୁଅନ୍ନ | | . مبسے در | | | | | BEE EE | नवकारकाया । | भु | 9 | 3.00376 | 38.0 | | | 83 53 | ユロアグアロユ | 19 | ģ | 0.00376
0.00348 | 0.595 | | | (F-13) | น _เ เออี <i>เกเ</i> นน | Я | 0.607 | 3.00266 | 0.602 | | | Ratio
Cell | qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq | | • 1 | Ö | | | | #35E | המהחמ ומהמההה | 19, | 1.588 | ,007 tr ₁ | 1.572 | | - | REPER PROPERTY OF THE | H0H04H00H HH H | 19 | 1.588 | 90800 | 1.57 | | a/D-1.5 | EFE
EFE | <i>ዕኪዕኪ⁄</i> ዕብ ኮ ጆሎስብዕዕ 1 ዝ | я | 1.588 | 0.007 <i>47</i>
0.00800
0.01206 | 1.577 1.520 1.521 | | | EEEEE | ההמהוטומו ומטהווההה | 57 | 1,545 | 90210- | 1.53 | | | | המהשמהה וההההההה וה ז | 19 | 1,555 | 3.01129 | | | | \$613
861
861
861
861
861
861
861
861
861
861 | ではみでのぎょうぎょうぎゅうょうごう | ** | 2.550 | 7.5800.C | 1.533 | | | Re 10 (| ૡૡૡૡૡઌઌઌઌ૽૽૱૱૱૱
ૹઽૢૢૢૢૢૢૢૢૢૢૢૢઌ૱ઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌઌ | | | ó | ., | | | 副語 | न्य । लक्ष्यत्वयय (य) । । व | 19 | 2.019 2 | 0.00279 | 2.013 2.006 2.009 | | | 題題 | ७ । लग्न ७७७ । नग ानगा । । | গ্ন | 2.023 | 0.00012 | 3 908 | | 0.541/0 | ESES ES | המהממשיה מהממחה וה | 宏 | 2.021 | 0.00593 | 88 | | q | Pet 10 | ਖ਼ਖ਼ਲ਼ਫ਼ਫ਼ਲ਼ਫ਼ਲ਼ਫ਼ਲ਼ਖ਼ਲ਼ਖ਼ਫ਼ <i>ਲ਼ਜ਼</i> ਲ਼ਖ਼ਖ਼ਖ਼ | ~ | ri | 0.0 | ų | | | | 1010 | 19 | 1.819 1. | 0.01459
0.011 <i>9</i> 7 | 1.788 1.816 1.81.1 | | | 85 85
2 | מושומעוממוומומומוושו | 19 | 1.841 | o | 816 1 | | 1 | 問題 | ממשמוטי וייי ושמיוי וממשה ו | ቋ | 1.830 | 14600.0 | ਬੰ | • Students "Litest absend no significant difference between everage ratios for L and M directions • Outstad. • Degression emalysis shows significant relationship with thickness. Value shows is $\sigma / \sqrt{\pi}$. | | व्यक्त २०२५ १५५३ ११४७३ | BYS BYS BYS | 4° 3 | # # 1 0 1 1 1 1 1 1 1 1 | WH4F | " | 78 2.122 2 | | 2.043 2.086 2.025 | |---|------------------------|--|-----------------|---|---------|---------------|-------------------|--------------------|-------------------| | | LIS (TEASTIVE VICTOR) | SES. | Retto 103 TES R | พ. เ. เ. เ. เ. เพพพอผลพพลลล เ.เล | 100 bit | 87
87 | 1.674 1.906 | 0.00999 | 1.854\$ 1.889 | | I
EXARING PROPERTIES OF | .5 | HSS HSS (I.S.) (| | עוו ו ושקשממו ואקששמקשעו ועומ נמושק
קין ומקומ ושמשע נמקש וממק ווע נק ז וינקש
מקו נממששמשר ושמששמק ושמקמ ושמקמ ושמק | | %
%
% | 1.747 1.759 1.753 | 0.01379 0.01483 | 1.72 1.73 1.73 | | COUPEZSSIVE, SHEAR AND PLATMISE ECARDIG PROPERTIES OF | e/D-1.5 | EUS (EUS) | ٦ | waanununununun IIII
uanununununun IIII
uan Ivunaa uavun
uuninununununun IIII
auninunununununun IIII
auninununununununununununununununun
see see see see see see see see see see | | ର
୫ | | 0.00792
0.00692 | 1.5248 1.540 | | OF PATIOS AMONG TENSILE, CONFRESSI | |
(1) (2) (1) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | (m) (m) (m) | ๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑๑ | | ۲ غ
د | 0.007 | 0.00461 | 0.602 0.593 0.600 | | STATISTICAL AMALYSES OF RAT | Ę. | (E) (E) (E) | 1 22 . (E) | หูนูนูนูนูนูนูนูนูนูนูนูนูนูนูนูนูนูนูน | R | 1,147 | | 0.00479 | 1.100 1.05 | | STAT | m | CT CT OFFICE | | iquqqqqqqqqqqq
googgaggggggggggg
i in ianowwu
q i iqunawuuaren | я
я | R 2.015 0.599 | occ.00.0 % | | 1.08 0.3% | * Ortdent's "Liest showed no significant difference between sverage raties for L and "If disections. * Regression smalysis showed significant relationship with thickness. Walso shows is $4/\sqrt{n}$. \$ Use this lower value. Student's "Liest showed segminicant difference between awarege raties for L and If directions. THE THE | | | 1 | | | | | 1 | |--|----------|---|--|-----|-------------------------|---------------------|-------------------------------------| | | | | ๚ฬ๚๗ เ ฆพ เพพ๚ฆฆฆพ๚๚๗๚ | Я | 1.772 | c.01 <i>0</i> 75 | 1.756 | | FLANE. | | 調題 | | ጼ | 1.768 | 0.01178 | 1.754 1.743 1.756 | | 1621 | | 翻記 | ष १७ १तन (तत्तत्वरूष १८) । त | 8 | 1.776 | c.01075 | 1.754 | | ED 223 | e/D-2-0 | Sell. | <u> </u> | | | | | | STRETC | e/o | EB EB | ๚ เ ๚ ៖ เพพพนพิเภณหพณ๚๚ | ន្ទ | 1.959 | °.005 | 1.948 | | LIEVED | | 題題 | न । १ । । नननत्रिंगेष । य नननंत | 8 | 1.965 1.953 1.959 | 9.0037 | \$#6.1 356.1 356,1 | | RESS-RE | | 調整 | H I IMWWHNMU IWH | 8 | 1.8 | °.00699 | 1,950 | | OF ST | | Ratio | ୡୣ୶ଡ଼ୢ୶ୠୣ୷୳୳୳୳୳୳୳୳୳
ଌଽଌୄଌୠୡଌୡୡଢ଼ୡୠୡୠୡୡଌ | | | - | | | PERTIES | | SEE SEE | <i>ሰ</i> ሰ ሰ ሰ ላ ተ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ | Ş | 1.533 | 0.00531 | 1.502 | | ING PRO | | REIRE | H 1 000HMM0H40H | 8 | 2.525 | 0.00842
0.00842 | 1.501 | | SU BEAR | | 題題 | ന്യ I പ്രസ്ഥിന െ I യ I മല | 8 | 1.50 | 2,00842 | 1.492 | | coppessive, shear and flatuss bearing properties of stress-relieved strenged east-tosl flate | \$72-1.5 | igh Rig | 0Faartwa4 | 뀱 | 1.535 | 0.00380 | 1.523 1.525 1.527 1.492 1.501 1.502 | | ON HAS | | BE RE | ייס יומטמוטין ו | 8 | 1.536 | 5.0051 [‡] | 1.525 | | EN. SE | | 851 SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
SE
S | מחח ומממחח | 8 | 1.535 | 0.00579 | 1.523 | | PPRESS | | Retio | ૡૡૡૡૡૡૡૡૡૡૡૡ
ૹઌૢૹૹઌૹઌૹૹ૱૱૱૱૱ | | | | | | | | हिं <u>स</u>
सिंहा | 400 0 4 W 1 W | Ş | 0.576 | 90200-0 | 0.572 | | IIO TENS | | श्रम् हिंस | HWOPU IN | 8 | 0.575 0.57 | 0.00200 | 0.571 0.569 0.572 | | TOS ANO | | क्ष्म् हिंह | anorain | 8 | 0.577 | 0.00308 | 0.573 | | OP RATE | | Ratio | 0000000
88800004
88800004 | | | | | | STATISTICAL ANALYSES OF RATIOS AMONG TENSILE, | | हाहि | なるるのできる | ន | 1.017 | 0.00331\$ | 1.013 | | ICAL AN | | ह्यधि | HEAVING SEA | ક | 3.00: | 15500.0 | 1.001- | | STATIST | | 細題 | A1 V20AA | 8 | 710.1 500.1 310.1 500.1 | 0.00772 | 1.001 -100.1 010.1 1.01.1 | | | | | 45 <i>L</i> % | 8 | 30.5 | 0.00172 | | | | | Petso
110 | ପ୍ରତିନୟ ଅଧିକ ।
ପ୍ରତିନୟ ଅଧିକ | a | ıæ | ને _{ન્દ} | . 45
F | | | | | | | | | | * Student's V-test showed no significant difference between everage reties for L and LT directions. * Rugnession analysis chuved significant relationship with thickness. * Value shown is G/ VT . | TABER ZICTO ANDIEMES OF BATICS ANONG TERRICE, CONTRESENTA, HARR AND FIATURE BANDING PROTECTES OF STREES, MILITARD STREET, TOTS-TASE FLAIR | |---| |---| | | | 1 | | | | 1 | |---------|----------|--|------------|-------|----------------------------------|--------------| | | | л I I I I I I I I I I I I I I I I I I I | * | 1.73 | o_carok2¢ | 1.87 | | | 睡題 | | 16 | 1,808 | 1 | , | | | 題題 | न्।।।।ना\।तत्वान्त्रात्व।।धन्।तत्व।।धन्।तथ | ₹. | 5.73 | ŧ | 1 | | 0.5 | Pett | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i> | | | | | | ·/pe.0 | (EEE) | MM 14 MM | 2 | 1.8% | 0.0000 | \$ | | | HEE | नंत । तत्व । तत्व । तत्वत्वत्व । । तत्व । । । । । । । । । । । । । । । । । । । | 70 | 1.873 | 0.0077 | 1.8431 | | | BERT | או הומאאההאים וומוהמווה | ĸ | 1.902 | o.atoby | 1.880 | | | Pet de | 。
るのははははははははははははななないがは
ないがかがないがいない。
ないでははないないがない。
ないではないないない。
ないではないないない。 | | | 3 | | | | | HELIH LEMMENTANNANANANA LAANNAN | 9 | 1.52 | 2,000 | 1,00 | | | 題題 | ल । १ । । । । । धलललेल । धथल १ ल । लंब । । । सललेल | 7. | 1.23 | 1 | 1 | | 1.5 | BE | הן והן ומומה נהומומה ומוהההמוה | Ħ | 1.53 | ١ | | | •/D-1.5 | | പ പ്രചച്ചാപപ്പെ വസ്ഥപ്പം വറിപ്പാവപ്വ | 8 2 | 1.530 | • | 1.526 | | | BERE | ० । ०० । त । बन्द्र तृष्यत्तततत्त्व । त | ĸ | 1.538 | 200 | 1,499 1.520 | | | BE BE | A 14 10 14M044 1044 140 10 | ĸ | 1.522 | 0.m132 | 7 | | | #8
#2 | | | | | | | | K SEE | പ ം ഒരു ശര സവ | 2 | 0.58 | 0.00 <u>7</u> 02 | 35.0 | | | REE | 40W 144WH | ĸ | 675-0 | 1 | , , | | | | ー ミングウ の 公 中 大 丁 | ĸ | 0.59 | 1 | . | | | Sett. | ంంంంంం
లగ్గాతకామాగ్రామ | | | | | | | BEE E | A01104 | ø, | 1.07 | 0.00887 | 707 | | | BERE | מ זיסטעט ו יוע | ĸ | 1.067 | 10 | 0,940, 1.059 | | | EEE | ARTO HUN INH | 7. | 0.998 | 0.0047 | 1:00 | | | HE HE | a imm ina im | €, | 126.0 | ي
و | 0.836 | | | 問題 | <i>๚</i> ๛๙๗๚๚๗๗ | ĸ | 2.040 | 1800.0 ATHOUS CONTRACTOR SEASONS | 0.896 1.032 | | | FE FE | धन स्वतः स्वतः | 0, | 0.909 | 7000 | 968.0 | | | 題題 | HUNDARHUH | ĸ | 0.997 | LZ ACOCCO | M. R. 0.988 | | | #8 | 4444444444466666666666666666666666666 | ĸ | ı× | je | eg. | * Student's "t"-test showed so significant difference between switces for L and LP directions a Magnessian analysis showed significant relationship with thickness. When shows is $\sigma_0' - \sqrt{\Gamma}$ enterical analyses of ratics among bensile, compressive, shear and flatans properties of stress-believed strenged tot9-1651 flate | (| ind. | | | ដ | #5T9 | -55
55 | |---------|----------------------|---|----|-------------------------|--|---| | : | | ला १ १७४ ६ १४८०४० १ सम्बद्धाः १८८५ । स्ट १ १ ४ स | ፠ | ₹ 1.82 | 0.2819 | 1.78
1.83
1.83
1.83
1.83
1.83
1.83
1.83
1.8 | | į | | ला ।।।१४८८। उत्तरम्बाह्य स्तराहर । त्रात | 13 | 8 1.835 | 1 | ı | | | | ALIENTHUMANIANA NAMARIA | ફ | 1.808 | 1 | i | | 0/2-c/c | 28
28
21
21 | <u>च्व्य्व्य्य्य्य्य्य्य्य्य्य्य्य्य्य्य्य्</u> | | | 92. | | | o' | | HILIMITA HAMIM WOME IN LESS HICKLIN | я | 1.989 | 0.a1261 0.91028
0.01 <i>635</i> | 1.968 | | į | 題問 | ATTITIO PARAMARATITITITI TATIA | ន | 1.931 1.997 | 0.0163 | 1.963 | | | 翻題 | ett til i Onselektelorietisk fra fra fra | 8 | 1.83 | o.a.261 | 1.955 | | - | \$0
21 | <u>ੑੑਜ਼</u> | | | | | | | 調題 | HMUUKA HMAUUH LU 1 (VCIK/U 1 MHI 1 | ቋ | 1.574 | 0,00604 | 1.59
Yes. 1 | | | HEINE | न १ प्रसंत्य १ संस्थलने १ से १ प्रसं १ से १ । उस | 13 | 1.579 | 1 | ı | | | 調調 | ले (लेप्पले ११) (ले) इत् १ (लेश्नेत (ले) ले | ģ | 1.564 | 1 | ł | | 0,0-1.5 | | ન ન વળજાજાજના કળન દવલન દન | ጽ | 1.577 | 3.00695 | 1.563 | | • | RE RE | + 0000HH#HH1H01H | 84 | | 0.00921
0.00996 | 1.567 | | | ES EX | # <u> </u> | 38 | 1.566 1.588 | .009Z | 1.547 | | · · | Ratio | 4.6.4.4.4.4.4.4.4.4.4.6.6.6.6.6.6.6.6.4 | | | | | | | ESE SE | പ്പ പ്രേത്യർ ശാലസ്ത്രപ്പ | ጸ | 0.603 | 0.003324 | 9.576-0 | | | BI BI | ल । ।मध्य । (।सध्यम्) उत्तल | ន | 0.599 | 1 | ı | | | 到超 | ल । ।लयम्य ।ए । वय | 57 | 909.0 | ı | 1 | | | Retio | <u> </u> | | | | | | | E E | MHW TRING | គ | 1.047 | .00637 | 1.0% | | | हम्ह | aduu | ង | 1.058 | .00162 | 1.055 | | | हा | ing & recorded as | হ্ | 566-0 | .07332a | 0.973, 1.055 | | | ध्यक्षि | er Forfort e | я | 0.925 0.995 1.058 1.043 | . K800 | 0.907 | | | 問題 | кжаары | ೫ | 1.025 | 0.00447 0.00733 0.0073324 0.00633
0.00807 0.00824 0.00162 | 1.017 | | | EB EB | त्। त्यस्त्।त्यत | Ħ | 0.939 1.025 | 6,208,00 | Kin R 0.979 0.921 1.017 | | | | HARRANG | | 986.0 | 0447 |) 616 | | | 問題 | | ន | | 0 | • | | CHICAL ANALYZES OF RATIOS ANGHO TRHISTIR, COMPRESSITM. SHEAR AND WE AMERICA | | | |---|------------------
--| | مايا | TABLE XXXVI | TRESSITVE. SURVED AND WEARINGS TO | | | | LINES OF RACTO | | UXSES OF RATIO | Sent Andread Age | THE THE PARTY OF T | | | | | | | | | ٤ | h 8 | 4 | a | |---|----------|------------|---------------|---|----------|-------------|-----------------|-----------------------|-------|--| | | PLATE | | 8981
200 | d tidestilling to the second | 1 | 7 | _ | • | 1.55 | 1.78 | | | 45.7 | | REBE | 7 | | 17 | - | , | ! | | | | 727 | ۹ | 95 | אמון ההו הו מיו וייים וייים | | 27 | 1.759 | 1 | 1 | | | i | STREET | 6/2/0 | BEE E | | 10 | | <u> </u> | \$0000° | 88. | 0/0 | | | T A KAKE | | | Q 144 11 1 1 144 1 1 Q444 4 4 4 1 1 1 1 | | * - | 1.855 1.867 | 0.0 | ٠ | i | | 00/00 | | | EJEE | 41 114 10 100 1 1 1444 1 1 1404 1 1 3 14 | | 71 71 | 1.879 1.1 | | | | | 2 | | | Patho
Cell | 88882888888888888888888888888888888888 | 72 | H | ਜ | • | ı | | | COMPRESSIVE, SHEAR AND FLATMER HEARING PROPERTIES OF STONES | | | EFE | מ ו זרמין וממיוע ומיוימיוא ואממיוין | | ス | 1.505 | 9.00 0 06¢ | 22.7 | | | EAUCEDIG | | | BERE | 411144104410114164444 | | 11 | 1.505.1 | ö
I | 7 | directions. | | TITIES ! | | | 問題 | A 1 18A 1 10 1 10 1 18AAAAAA | | 17 | 1.505 | ı | ı | H pa | | ATO 72 | 13 | | | വഴവപ്പെട്ടെപ്പെപ്പെ വവ 1 1 1 dd | f | | ផ្ល | 0.00363¢ | 1.528 | for L | | , SHEAR | | | EE EE | | , | | ag i | 1 | 1 | Value | | RESSIVE | | | | Hau 100 1454 10 10 1 1 1 14 | 1 | | 8 | ı | ı | thiokness. | | | - | | 881 | ज़ॣज़ज़ज़ज़ज़ज़ज़ज़ज़ज़ज़ज़ज़ज़ज़ज़ज़
<i>ऴ</i> ढ़ख़ <i>ॺख़फ़ॗॡॡॹढ़</i> ॻज़ज़ज़ज़ | | | | | , | ₽ _A | | TRIBITE | | 5 | | <u> </u> | * | 0.57 | 0,00,00 | | 0.578 | differences between | | AMONG | | | 77 | त्ति । शतिशतिकान्ति । त | 71 | 995.0 | | | 1 | OLEGO
Section | | OF RACTOS | • | R | ', \ | 01000000000000000000000000000000000000 | 71 | 475.0 | 1 | | 1 | Manta | | | | D | | a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a | <u> </u> | <u></u> - | | . — | | of a start | | AL ARA | | S. | | नितं हथीलल हम्ब | 17 | 3.070 | | 2000 | 1.086 | peroqu | | SEATISTICAL ARAINSES | | 8r | 部 | പവ 1 ഗഗിയപ്പെറ | 17 | 1.036 1.013 | 46500.0 | | 3 | -tost | | 5 | | F. | | <u> </u> | 11 | | 0.00315 0.00594 | | 1.052 | Student's "t"-test aboved no significant difference be
Refression analysis aboved significant relationally with | | | | B : | 1,2 | 44000000000000000000000000000000000000 | 77 | 585 | 0.00315 | th E 0.988 | | | | | | | Retto | ૡૡૡૡૡૡૡૡઌઌ૱
ૡ૽ૺ <i>૽૽ૺૹ૽ૢ૽ૢૢ૽ૢ૽ૢ૽ૢૢ૽ૢૢ૽ૢૢ૽ઌ૽ૢ૽ૢૢૢૢ૽ૢ૽</i> ૹ૽ૢૢૹ૽ૢૹ૽ૢૢૹ૽ૢૹ૽ૢૢૢૢૢૢૢૢૢૢ | ¤ | ~ | e jac | 5 | | • * | TABLE XXXVII RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED 2014-T651 PLATE | | | | Thickne | ss, in. | | | |--|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Ratio | 0.250-
0.499 | 0.500-
1.000 | 1.001-
1.500 | 1.501-
2.000 | 2.001-
3.000 | 3.001-
4.000 | | $\mathbf{F}_{\mathrm{tu}}(\mathbf{L})/\mathbf{F}_{\mathrm{tu}}(\mathbf{LT})$ | 0.981 | 0.986 | 0.990 | 0.995 | 1.002 | 1.011 | | F _{ty} (L)/F _{ty} (LT) | 1.023 | 1.023 | 1.023 | 1.023 | 1.023 | 1.023 | | F _{cy} (L)/F _{ty} (LT) | 0.987 | 0.987 | 0.987 | 0.987 | 0.987 | 0.987 | | F _{cy} (IT)/F _{ty} (LT) | 1.038 | 1.038 | 1.038 | 1.038 | 1.038 | 1.038 | | $F_{su}/F_{tu}(LT)$ | 0.602 | 0.602 | 0.602 | 0.602 | 0.602 | 0.602 | | F _{bru} /F _{tu} (LT) | | | | | | | | e/D=1.5 | 1.577 | 1.577 | 1.577 | 1.577 | 1.577 | 1.577 | | e/D=2.0 | 2.009 | 2.009 | 2.009 | 2.009 | 2.009 | 2.009 | | F _{bry} /F _{ty} (LT) | | | | | | | | e/D=1.5 | 1.533 | 1.533 | 1.533 | 1.533 | 1.533 | 1.533 | | e/D=2.0 | 1.811 | 1.811 | 1.811 | 1.811 | 1.811 | 1.811 | TABLE XXXVIII RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED 2024-T351 PLATE | *** | | | Thick | ness, in. | | , | |---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Ratio | 0.250-
0.499 | 0.500-
1.000 | 1.001-
1.500 | 1.501-
2.000 | 2.001-
3.000 | 3.001-
4.000 | | $F_{tu}(L)/F_{tu}(LT)$ | 1.008 | 1.008 | 1.008 | 1.308 | 1.008 | 1.008 | | F _{ty} (L)/F _{ty} (LT) | 1.148 | 1.141 | 1.134 | 1.126 | 1.114 | 1.100 | | F _{cy} (L)/F _{ty} (LT) | 0.946 | 0.936 | 0.927 | 0.918 | 0.903 | 0.884 | | F _{cy} (LT)/F _{ty} (LT) | 1.075 | 1.068 | 1.062 | 1.056 | 1.047 | 1.035 | | F _{su} /F _{tu} (LT) | 0.600 | 0.600 | 0.600 | 0.600 | 0.600 | 0.600 | | F _{bru} /F _{tu} (LT) | | | | | | | | e/D=1.5 | 1.514 | 1.514 | 1.514 | 1.514 | 1.514 | 1.514 | | e/D=2.0 | 1.854 | 1.854 | 1.854 | 1.854 | 1.854 | 1.854 | | F _{bry} /F _{ty} (LN) | | | | | | | | e/D-1.5 | 1.733 | 1.733 | 11733 | 1.733 | 1.733 | 1.733 | | e/D=2.0 | 2.075 | 2.075 | 2.075 | 2.075 | 2.075 | 2.075 | TABLE XXXIX RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED 2024-T851 PLATE | Thickne | ess, in. | |-----------------|--| | 0.250-
0.400 | 0.500
1.000 | | 0.199 | 1.000 | | 1.001 | 1.001 | | 1.010 | 1.010 | | 1.013 | 1.001 | | 1.018 | 1.013 | | 0.572 | 0.572 | | | | | 1.527 | 1.527 | | 1.948 | 1.948 | | | | | 1.502 | 1.502 | | 1.756 | 1.756 | | | 0.250-
0.499
1.001
1.010
1.013
1.018
0.572
1.527
1.948 | TABLE XL RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED 7075-T651 PLATE | | | | | | in. | | | |--|-----------------|-----------------|--------------------|-----------------|-----------------|-----------------|----------------| | Ratio | 0.250-
0.499 | 0.500-
1.000 | 1.001-
2.000 | 2.001-
2.500 | 2.501-
3.000 | 3.001-
3.500 | 3,501
4,000 | | F _{tu} (L)/F _{tu} (III) | 0.988 | 0.988 | 0.988 | 0.988 | 0.988 | 0.988 | c.988 | | F _{tu} (ST)/F _{tu} (IF) | om cas cas | de tre est | 4 4 4 4 | 0.896 | 0.896 | 0.896 | 0.896 | | F _{ty} (L)/F _{ty} (LT) | 1.032 | 1.032 | 1,032 | 1.032 | 1.032 | 1.032 | 1.032 | | F _{ty} (ST)/F _{ty} (IIT) | | | , | 0.890 | 0.890 | 0.890 | 0.890 | | F _{cy} (L)/F _{ty} (LT) | 1.008 | a. 999 | 0.987 | 0.974 | 0.966 | 0.957 | 0.949 | | F _{cy} (LT)/F _{ty} (LT) | 1.059 | 1.059 | 1.059 | 1.059 | 1.059 | 1.059 | 1.059 | | F _{cy} (ST)/F _{ty} (IF) | 640 NW 509 | क्ल क्षत क्षत | व्यर्ग वर्गी वर्गी | 1.021 | 1.021 | 1.021 | 1.021 | | F _{su} /F _{tu} (I/T) | 0.562 | 0.568 | 0.579 | 0.591 | 0.598 | 0.606 | 0.614 | | F _{bru} /F _{tu} (LT) | | | | | | | | | e/D=1.5 | 1.516 | 1.516 | 1.516 | 1.516 | 1.516 | 1.516 | 1.516 | | o/D=2.0 | 1,869 | 1.869 | 1.869 | 1.869 | 1.869 | 1.869 | 1.869 | | F _{bry} /F _{ty} (III) | | | | | | | | | ≎/D=1.5 | 1.468 | 1.485 | 1.517 | 1.550 | 1.572 | 1.594 | 1.616 | | e/D=2.0 | 1.723 | 1.740 | 1.773 | 1.807 | 1.829 | 1.852 | 1.874 | TABLE XLI RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES OF STRESS-RELIEVED STRETCHED 7079-T651 PLATE | | | | | Thi | ckness, | in. | | | | |---|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Ratio | 0.250- | 1.501-
2.000 | 2.001-
2.500 | 2.501-
3.000 | 3.001-
4.000 | 4.001-
4.500 | 4.501-
5.000 | 5.001-
5.500 | 5.501-
6.000 | | | | | | | | | | | | | $F_{tu}(L)/F_{tu}(LT)$ | 0.979 | 0.979 | 0.979 | 0.979 | 0.979 | 0.979 | 0.979 | 0.979 | 0.979 | | F _{tu} (ST)/F _{tu} (LT) | | | 0.321 | 0.921 | 0.921 |
0.921 | 0.921 | 0.921 | 0.921 | | F _{ty} (L)/F _{ty} (LT) | 1.017 | 1.017 | 1.017 | 1.017 | 1.017 | 1.017 | 1.017 | 1,017 | 1.017 | | $F_{ty}(ST)/F_{ty}(LT)$ | | | 0.907 | 0.907 | 0.907 | 0.907 | 0.907 | 0.907 | 0.907 | | F _{cy} (L)/F _{ty} (LT) | 0.996 | 0.991 | 0.989 | 0.987 | 0.983 | 0.978 | 0.977 | 0.975 | 0.973 | | $F_{cy}(LT)/F_{ty}(LT)$ | 1.055 | 1.055 | 1.055 | 1.055 | 1.055 | 1.055 | 1.055 | 1.055 | 1.055 | | F _{cy} (ST)/F _{ty} (LT) | uno elle 160 | We tak 000 | 1,030 | 1.030 | 1.030 | 1.030 | 1.030 | 1.030 | 1.030 | | ${ m F_{su}/F_{tu}(LT)}$ | 0.576 | 0.588 | 0.594 | 0.601 | 0.611 | 0.621 | 0.627 | 0.634 | 0.640 | | F _{bru} /F _{tu} (LT) | | | | | | | | | | | e/D=1.5 | 1.563 | 1.563 | 1.563 | 1.563 | 1.563 | 1.563 | 1.563 | 1,563 | 1.563 | | e/D=2.0 | 1.968 | 1.968 | 1.968 | 1.968 | 1.968 | 1.968 | 1.968 | 1.968 | 1.968 | | F _{bry} /F _{ty} (LT) | | | | | | | | | | | e/D=1.5 | 1.513 | 1.540 | 1.556 | 1.571 | 1.594 | 1.617 | 1.633 | 1.648 | 1.664 | | e/D=2.0 | 1.767 | 1.789 | 1.802 | 1.815 | 1.834 | 1.853 | 1.866 | 1.879 | 1.892 | TABLE XLII RATIOS FOR COMPUTING DESIGN MECHANICAL PROPERTIES OF STRESS-RELIEVED STREICHED 7178-T651 PLATE | | | Thicknes | s, in. | | |---|-----------------|-----------------|-----------------|-----------------| | Ratio | 0.250-
0.499 | 0.500-
1.000 | 1.001-
1.500 | 1.501-
2.000 | | F _{tu} (L)/F _{tu} (LT) | 0.988 | 0.988 | 0.988 | 0.988 | | F _{ty} (L)/F _{ty} (LT) | 1.032 | 1.019 | 1.001 | 0.983 | | F _{cy} (L)/F _{ty} (LT) | 1.000 | 1.000 | 1.000 | 1.000 | | F _{cy} (LT)/F _{ty} (LT) | 1.066 | 1.048 | 1.024 | 1.012 | | $\mathbf{F}_{\mathrm{au}}/\mathbf{F}_{\mathrm{tu}}(\mathbf{L}\mathbf{r})$ | 0.578 | 0.549 | 0.510 | 0.472 | | F _{bru} /F _{tu} (LT) | | | | | | e/D=1.5 | 1.528 | 1.474 | 1.402 | 1.330 | | e/D=2.0 | 1.878 | 1.805 | 1.707 | 1.609 | | F _{bry} /F _{ty} (LT) | | | | | | e/D=1.5 | 1.513 | 1.458 | 1.385 | 1.312 | | e/D=2.0 | 1.784 | 1.721 | 1.638 | 1.554 | DESIGN MECHANICAL PROPERTIES OF 2014-1651 ALUMINUM ALLOY PLATE | | | | -4.000ª | m | • | 100 R | 1000
1000
1000
1000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1210e | 87ce
103ce | 111 | | |-------|-------|------------|---------------|-------|-----------------------|---------------------------|------------------------------|---|------------------------------------|-------------------------------------|----------|--| | | | | 3.001- | 4 | | \$
\$8\$ | ನಿನ್ನ
ಕಿ | 7.2.2.5.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8 | 97.de | 84 de | ا ۱ | | | | | | -3.000 | m | | 44.82
13.92 | 0000
0000
0000 | % 515 % | 101°
129° | 30°C | 111 | | | | | | 2.001- | Å | | ውው፤
የ/ኮሙ | 71-71 BE | 48.69.69. 48. | 99d
12751 | 87d
103d | サるよ | | | | | | -2.000 | ዉ | | 999 | 62°
61° | 5 5 | 104°
133° | 936 | | | | 2014 | Plate | 1651 | 1.501- | Ą | | 29
20
1 | 881 | 28.21 A | 103d
131d | 90d
107d | שואט | 10.7 ²
10.9 ⁸
4.05 ⁸ | | 9 | 14 | | .001-1.500 | В | | 64
68
68 | 62
61
61 | g851 # | 107d | 93d | : : : | 44 | | | | | 1.001 | Ą | | 299
67
 | 128 | 48 ² | 106d
135d | 90d
107d | ן אט | | | | | | 000.1 | Ø | | 286 I | <u> </u> | 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | 109d
139d | 193d | | | | | | | 0.500-1.000 | 4 | | 1986 | 1 ሜ& | 854 1 3 | 106d
135d | 107d | 99 | | | | | | 654.0 | В | | 888 I | 86 I | 901 ± | 109d | 93d | 111 | | | | | | 0.250 | A | | 1 64 cp | 188 | 4841. 5 | 106d
135d | 90d
107 | 42 | | | ALLOX | FORM | CONDUCTION | HICKNESS, in. | BASIS | echanical Properties: | Ftu, ks1
L
Lr
ST | ty, kai
Li
Lir
Sip | Foy, ksi
In
Sir
Fair, ksi | ery, kai
(e/D-1.5)
(e/D-2.0) | bry, kst.
(c/ps1.5)
(c/ps2.0) | per cent | E, 10 ⁶ ps1
E _c , 10 ⁶ ps1
G, 10 ⁶ ps1 | a - Not covered by specifications. b - Lower than for To in MIL-HER-5, August 1962. c - Now value; not shown in MIL-HER-5, August 1962. d - Higher than for To in MIL-HER-5, August 1962. e - Computed using extrapolation. f - Bearing tests made using ultrasonic cleaning; results average higher than without cleaning. g - Higher than in MIL-HER-5, August 1962. 67 DESIGN MEGBANICAL PROPERTIES OF 2024-7351 ANT -7651 ALUMINUM ALLOY PLATE TABLE XLIV | Parker P | ALLOY | | | | | | | | 2024 | - | | | | | | | |--|---|----------|------------|--------------|------------|---|---|-------------|-----------------|----------------------|---------------------|----------------|------------------|----------------------|-------|---| | 1.50 | Port | | | | | | | | Plat | Q | | | | | | | | 1. | מבובומו | | | | | -7351 | | | | | | | | | -1821 | | | 1 | MICHESS, in. | 9.3 | 0.199 | 95.0 | 2.00 | 1.001 | 2.58 | 1.501- | 8.80 | 2.001-3 | 80. | 3.001-4 | 900 | 0.250-(| _ | 0.500-1.050 | | 15 | Ksis | -c | В | ٧ | В | ٧ | В | ¥ | m | Ą | В | ٧ | B | ٧ | æ | ٧ | | 13 13 13 14 15 14 15 14 15 <td< td=""><td>charteal Properties:
tu' kai
tu'</td><td></td><td>\$</td><td>4868</td><td>9.0
185</td><td>52 g</td><td>484</td><td>95</td><td>°0.</td><td>86</td><td>9°0
20°0
20°0</td><td>8 0</td><td>8 2</td><td>67°6
67°6</td><td>88</td><td>888</td></td<> | charteal Properties:
tu' kai
tu' | | \$ | 4 868 | 9.0
185 | 52 g | 484 | 95 | °0. | 86 | 9°0
20°0
20°0 | 8 0 | 8 2 | 67°6
67°6 | 88 | 888 | | 13 | R
Bod 1 | | 3 25 | इ.स. | . K# | 25 44 45 45 45 45 45 45 45 45 45 45 45 45 | ू
इस् | 1 201 |) हुन्म
इन्म | 9914
| 2004 | 80 | 800
900
44 | 7.00
8.00
9.00 | 48 | , | | 39b 40b 37b 37c <td>rox
Rosi</td> <td>ጸታ</td> <td>T2</td> <td>ž</td> <td>o ta</td> <td>83</td> <td>Q E #</td> <td>82,47</td>
<td>व
स्थ</td> <td>27.0</td> <td>009
44</td> <td>88</td> <td>88</td> <td>59°
59°</td> <td>349</td> <td>55
50
50
50
50
50
50
50
50
50
50
50
50
5</td> | rox
Rosi | ጸታ | T2 | ž | o ta | 8 3 | Q E # | 82,47 | व
स्थ | 27.0 | 009
44 | 88 | 88 | 59°
59° | 349 | 55
50
50
50
50
50
50
50
50
50
50
50
50
5 | | 97b 100b 94b 95b 115b 115c 11 | n, ksi | ** | ê
Î | 37.b | ĝ, | Z
Z | κ, | 374 | R | 360 | 77° | 8 | 358 | × | 386 | , SK | | 894 714 764 714 764 716 896 716 896 776 100 896 776 10 | n, ksi
%-1.5
%-2.5 | ##
| 188 | 15.8° | कुट्टी | 155 | 13% | žĮ. | ф
ф | ន្តដ | 94°
115° | 88
88 | 10.88
8 | 131° | 1320 | 101°
129° | | 12 - 9 - 7 - 6 - 4 - 5 - 5 - 10.76 10.76 10.98 1.058 | m, kai (
9/0-1.5)
9/0-2.5) | 888 | 244
894 | 85g | 2564 | 525
556 | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 71.d
854 | 2562 | 71°
85° | 76°
91° | 88 | 83
[]5 | 97°
102° | 88 | 87°
102° | | | per cent | 15 | 1 | တ | 1 | ۲- | 1 | 9 | 1 | | ı | U _R | | ν, | 1 | 26 | | | 10 ⁶ pa1
, 10 ⁶ pa1
10 ⁶ pa1 | | | | | | | | 2.01 | ર્જ સ્ટ્રે
સ્ટ્રે | | | | | | | | | | | | | 3.501- | 00 | В | 88% | , <u>C.</u> | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 56° | 105°
129° | 89°
103° | 111 | | | | |-----------------------------|---------------------------------|------|-----------|----------------|--------------|-----|------------------------|-----------------------|---|---|---------------------|--------------------------------------|---|--------------|--|-----
--| | | | | | | 3.5 | # | 4 | 866
866 | 4282° | 0,00
0,000 | 7 F | 102 ^d
125 ^d | \$986
800
800
800
800
800
800
800
800
800
8 | 101 | | | | | | | | | | 3.001- | | ۵ | 77.
37.00
37.00 | , <u>1988</u> | 57°
62°
62° | 8 # | 109° | 2001
2001 | 111 | 1 | | | | | 題 | | | | 3.0 | | 4 | 358 | 550g | ing i | 7 To T | H
H
H
H | 93.d
106d | ₩.H | | | | | į | OY PLA | | | | 48 | 3 4 | | | 55.
55.
55.
55. | 388 | (A) | 109d | 57d | 111 | | | | | | UM ALL | | | | 2,501- | | | 38.50 | 738b | 9.5%
5.5% | p24 | 106d
137d | 17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | הוארו | | | | | 1 | 1913-1934 ALCHLINUM ALLOY PLAYE | 7075 | Plate | - <u>1</u> 651 | 48 | B | | #1% | 2505 A | 888 | Q TI | 114d | 101 ^d | 111 | 200 | O. | | | E | 1 | | | • | 2.001- | ¥ | | \$275° | 95.00 pt | 388 | 43 | 111,d | 128 | らうよ | 10.3 | 3.9 | | | | | | | | 48
48 | 3 | | 78 ₀ | 187 | 1388 | 46b | 120d | 105d | 111 | | | 2.
1962.
3. | | ₩. | | | | | 1.001- | ¥ | | 1460 | 881 | 138 | 45p | 11.7d | 100d | 10-4 | | | st 196
ugust
ust 19
leaning
leaning | | da
Mechanical properties | | | | | 88 | В | | 268
1 | दुरह । | । युष्ट | 45p | 121d | 102d | 111 | | | k-5, August 1962.
K-5, August 1962.
Onic cleaning;
hout cleaning. | | MICAL | | | | + | 0.58
1.58 | 4 | ~ | 13% | 1 88 | 98
1 | q† | 1174 | 98d
115d | ا مه | | | 10ms.
HDBK-5
II_HDB
-HDBK-
ultras
en viti | | | | | | | 0.250 | E) | | 13gp | P 288 | 69d
72d | Q ^{‡†} | 120d
148d | 100d
117d | 111 | | | ificat
n MIL
in MIL
in MIL
using
her th | | DESIGN | | - | 1 | [| 0 | 4 | | 139 | 1 88 | 19dd
19dd | 43 ₀ | 1174 | ซซ | ∞ω | | | or spector of show and an | | | ALLOY | POKK | CONDITION | THICKNESS | fn. | | Machanical Properties: | | fty, the state of | ្នៃង្គី | Fau, Est
Fr, ksf | 1.5)
2.0)
ks1° | 1.5)
12.0)
r cent | ។ដូ <u>ខ</u> | E, 10 ⁶ ps1 Ec, 10 ⁶ ps1 | 2 | a - Not covered by specifications. b - Lower than for T6 in MIL-HDEK-5, August of Higher than for T6 in MIL-HDEK-5, August of Higher than for T6 in MIL-HDEK-5, August of the Higher than thouse of results average higher than without of Higher than in MIL-HDEK-5, August 1962 | E Ð Э [TRIES INTERPOLATION PROPERTIES OF 1919-1651 AURITHON ALLOT FLAIR | | 1 | 1. 1. 1. 1. 1. 1. 1. 1. | 2 884 788 688 4
2 884 7888 688 4 | - - | | |--
--|--|---|------------------|----------| | The second state of se | 1 | | \$ \$\$\$\$ \$\$\$\$\$ \$ | | <u> </u> | | 11 12 12 12 12 12 12 12 | 121 122 123 | | 2 858 858 855
2 858 855 | \$ 52% AAA 588 | | | | | | \$\frac{1}{2} \frac{1}{2} \frac | \$ 65% AAA 588 | | | | | | 2 328 499 524
2 328 499 524 | \$ \$2% AAA && | · | | | 1986 | | \$ 864 x88
\$ 666 466 | \$ 88% KAK | | | | 1 | | 1 861 28 | AN ANG P | | | 1 | 11 | | \$ 864
\$ 688 | 888 \$ | · | | | 11 | | 2 38 | 2 888
2 888 | | | 11 | | 1 | 130 120 | 430 | · | | 11 | H. | Hall He H | | _ | • | | The life life life life life life life lif | The life | | 6 | e e | | | 18.6
18.6 | 110 110 110 110 110 110 110 110 110 110 | 11 11 11 11 11 11 11 11 11 11 11 11 11 | | A
A
A | | | 11. 11. 11. 11. 11. 11. 11. 11. 11. 11. | 110 110 110 110 110 110 110 110 110 110 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | , | | ę | | 111 100 111 100 111 100 111 | 110.6 1.9 T. | 9 1 9 1 1 1 1 1 1 | 150 150 150 150 150 150 150 150 150 150 | k
A | 100 E | | 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 | 119.3 110.6 10.6 10.6 3.9 10.75, Togal 13 William 5, August 1362, 10.75, Togal 13 William 1362, | | 9 | 1 | | | 1 | 118.3
10.6
3.9
3.9
4 - Nighor them ladicated using ratios to 12 | 11 wa | 11 | 11 | | | 7 | 10.6 ³
3.9
1.7551 in VIIHIME-5, August 1.962. | 75-57 18-5 | 10.3 | | | | | 3.9
1. This is nii-iisk5, depost 1962. | | 10.6° | | | | | , Toyl in MIL-HISE-5, Angust 1969. | | 3-9 | | | TABLE XLVII DESIGN MECHANICAL PROPERTIES OF 7178-T651 ALUMINUM ALLOY PLATE | ALLOY | | | | 7178 | 3 | | | | |--|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------------|--------------|--|--| | FORM | | | | Plat | С Ө | | | | | CONDITION | | | | -тб | 51 | | | | | THICKWESS, in. | 0.250 | -0.499 | 0.500- | -1.000 | 1.001- | -1.500 | 1.501- | 2.000 | | BASIS | A | В | A | В | A | В | A | В | | Mechanical Properties | | | | | | | | | | F _{tu} , ksi
L
LT | 83 ^a
84 | 85 ^a
86 | 83 ⁸
84 | 85 ^a
86 | 83 ^a
84 | 85°
86° | 79 ^{ad}
80 | 80°d
81° | | F _{ty} , ksi
L
LT | 75 ^b
73 | 77 ^b
75 | 74 ^b
73 | 76 ^a
75 | 73 ^a
73 | 75°
75° | 70 ^{cd}
70 | 71°cd
71° | | F _{cy} , ksi
L
LT | 73 ^a
78 ^b | 75 ^a
80 ^b | 73 ^a
77 ^b | 75 ^a
79 ^b | 73 ^a
75 ^a | 75°
77° | 70 ^{cd}
71 ^{cd} | 71 ^{cd}
72 ^{cd} | | F _{su} , ksi | 49 ^a | . 50 ^a | 46 ⁸ | 47 ^a | 43 ^a | 44° | 38 ^{cd} | 38 ^{cd} | | F _{bru} , ksi ^e
(e/D=1.5)
(e/D=2.0) | 128 ^b
158 ^b | 131 ^b
161 ^b | 124 ^b
152 ^b | 127 ^b
155 | 118
143ª | 121°
147° | 106 ^{cd}
129 ^{cd} | 108 ^{cd}
130 ^{cd} | | F _{bry} , ksi ^e
(e/D=1.5)
(e/D=2.0) | 110 ^b
130 ^b | 113 ^b
133 ^b | 106b
126b | 109 ^b | 101 ^b | 104°
123° | 92cd | 93cd
110 ^{cd} | | e, per cent
LT | 8 | | 6 | | 4 | | 3 | | | E, 10 ⁶ psi
E _c , 10 ⁶ psi
G, 10 ⁶ psi | | + | | 10.
10. | 6 ^f | | | | ^{a - Lower than for T6 in MIL-HIEK-5, August 1962. b - Higher than for T6 in MIL-HIEK-5, August 1962. c - New value; not shown in MIL-HDEK-5, August 1962. d - Computed using extrapolation. e - Bearing tests made using ultrasonic cleaning; results average higher than without cleaning. f - Higher than in MIL-HDEK-5, August 1962.} TABLE XUVILL RATICS OF TENSILE, COMPTESSIVE, SHEAR AND BEARING PROPERTIES AT CENTER OF THICKNESS TO THOUSE AT MIDWAY LOCATION FOR STRESS-RELIEVED STRETCHED FLATE OF SEVERAL ALBUMA ALLOYS | | | | | | | Properties | at | Center/Properties | at Midway | | | | |------------------------|--------|---------------------------|---------------|--|------------------|---|-----------------------------|--|-----------------------|-------------|---|--| | | H0.9. | Sample | ē | | | | | BUS (C) | ्ट्र
इंट | HIS (| ু
তহি | | | Alloy
and
Temper | | number
and
Producer | rec-
tion* | TUS(C)
TUS(M) | TYS (C) | ONS (C) | SU(C) | e/D=
1.5 | 2.0 | 1.5 | e/D | | | 2014-1651 | 1.501 | 301652 | ΗĒ | 8,8 | 86 | 년
8 | g. | 3 ,00 | 9.9
8.8 | 9,8 | 9.9
4.8 | | | | 1.891 | 281,486 | in! | 38.8
38.8 | 965 | 88 | , o c | 72.8 | ्र
इंट्र | 186
186 | 38 | | | | 2.000 | 281,6564 | ដែដ | 440
80.90 |
805
805 | 44
868 | ক
ত
ত | 16.00 | 900
128 | 999 | 28 | | | | 2,001 | 281580 | H | رن
دون
دون | 86 | ر
اور | ە
ق | 9,9 | 9,0 | 88 | 8,8 | | | | 2.250 | 281655## | 145 | | i
See | ,
,
, | 300
4899 | 18.8 | 9 | 16.0 | 49
88 | | | | 2.500 | 281597 | 다 | 44
88 | оч
88 | 144
200
200 | 800 | 00
186 | 9
9
8
8
8 | 900 | 00
88 | | | 2024-17351 | 1.980 | 301845 | H | ر
د
د
د
د | 40.
40. | | 95.00 | 96.0 | 200 | 0.0
0.8 | 5.0
0.0 | | | | \$.000 | 301819 | 4 45 | -i | | | ,
,
,
, | 200 | 188 | 600 | 년
일 | | | | 2.000 | 281844# | i.aĦ | 144
199 | iuu
See | 144
89 | 000
1860
1860
1860 | 198 | ,
188 | 15.00 | 0 ¢ | | | | 2.001 | 281581 | H. | ۲.
98 | 1.00
5.00 | • | 0.93
5.93 | 9,0 | 1.0 | 8,8 | 8,8 | | | | 2.250 | 281598 | in. | 328 | | | ,
200 | | , d. c. | 988 | | | | | 2.250 | 301782# | in: | i i i | | | 400 | , b, 8 | , c. c. | 200 | 6 | | | | 2.515 | 281749 | in: |
14:
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20:00
20
20
20
20
20
20
20
20
20
20
20
20
2 | ٵ
ٷٷ | | o o c | , S | 80.0 | 96 | 4.
2. | | | | 2,800 | 301848 | 1,1 | iei
Š | 985 | | 000 | | ,
200 | i | ,60
100
100
100
100
100
100
100
100
100
1 | | | | 3.000 | 301846 | in!i | | 988 | 888 | 88 |
 | 2019 | 100
84 | 16.0
16.0 | | | 2024-11851 | 2.001 | 261,590 | H, | | G (| 10.1 | 9,6 | | 3 ,8 | 88 | 9.0
10.0 | | | | 2.250 | 281615 | i, | , o c | 2 0 c | 188 | 1 | 100
100
100
100
100
100
100
100
100
100 | , o c | तित्र
दे | 9 | | | ē | 2.250 | 301783 | in: | 788
2 de | ,
,
,
, | , d. | 183 | 86 | 500 | 88 | 500 | | | | 2.515 | 261750 | in# | | 10 -
889 | 48 | , | | 38
300 | 900
128 | १८
१८ | | | | | | 1 | | | *************************************** | | | | | | | TABLE XLVIII (CONCLUIRD) RATIOS OF TENSILE, COMPHESSIVE, SHEAR AND REALCING PROPERTIES AT CENTER OF THICKNESS TO THOOSE AT MIDNAY LOCATION FOR STRESS-PELLIVED STRETCHED PLATE OF SEVERAL ALIMINIA ALLOYS | | | | | | | Property | Properties at Center/Properties at | roperties 8 | st Michay | | | | |------------------------|---------------------------------------|---------------------------|---|--------------------------|---------------------------------|---|---|---|------------------|----------------------------|----------------------------|--| | | Sample | ple | i | | | | | 0) 5223 | | (3) STA | \$ 7 | | | Alloy
and
Temper | Tri ck-
roes,
in- | Member
And
Producer | 를 보고
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | (E) SD2 | TYS(C) | CYS(N) | 30(c)
SU(K) | e/D. | 1000 | e/D
1.5 | 1 1 | | | 7575-1651 | 1.63 | 231385 | 급텀 | 1.05 | 499
111 | чч
6.9. | 0.89
0.91 | 9.0
4.8 | 88 | 9.00
Pg. | 88 | | | | 2.001 | 281502** | ᆈ | 1.05 | ь.
10. | 50.0 | 88 | 8,6 | 8.6 | ц.
98 | 800 | | | | 2.250 | 281417 | ដីភ | 36. | 100 | -i-i-i | 700 | 300 | 20.0 | ,
,
,
,
,
, | X 3. | | | | 2.250 | 281654** | Ħal | 0 H | 3.4.4
8.4.6 | i.i. | 550 | 888
30, | 34.
888 | 388 | 888 | | | | 2.269 | 281411 | ปักปั |
 | -i-i-i
 | | ກໍ່ຍູ່ຄູ່ | 9
8
8
8
8 | 100
388 | 999 | ,
,
,
,
,
, | | | | 2.501 | 301894 | n! | <u>ب</u> | 5.5 | 45 | 96 | 4.0
88 | 200 | 88 | 86 | | | | 2.501 | 701897 | 3,45 | 585 | | 178 | ,
4,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8, | 188
188 | , o - | 100 | 1878 | | | | 2.773 | 281491 | ia!i | า
เกล | iuu
142 | 144
200
80
80
80
80
80
80
80
80
80
80
80
80
8 | 888 | ,
,
,
, | ,
इन्द्र | 38 | 185 | | | - | 3,025 | 231420 | ភះ | رار
دون | 4.
8. | 4.09
60,1 | 96 | 9.0 | 0
0
0
0 | 8,8 | 8,0 | | | | 3.953 | 331684 | ia
E |
 | i-i-i
929 | 111
100
100
100
100
100
100
100
100
100 | | .01
.082 | ्रम्म
१वव | | 888 | | | 1691-6707 | 1.635 | 281410 | ьţ | 88 | 88 | 88 | 88 | 88 | 83 | 88 | 88 | | | | 2.000 | 261500** | i _n ii |
3-1-1
82-2 | | 44.9 | 188 | 10'4
88'6' | | 868 | 78.8
18.8
18.6 | | | | 2.260 | 301876 | ьĘ | 600 | 86 | 1.08 | 평
6 6 | 8,8 | 88 | 9,0 | 88 | | | | 2.500 | 701877 | ia
E | | 100
200
200
200
200 | 144
000
VV | 96
96 | 85 | 40
000 | 88 | 11.
12.0 | | | | 3.000 | 251842** | ыř. | 100 | 1.06
98
98 | 90.1 | 0.0
8.8 | 9.9 | 88 | 83 | 6.9
0.97 | | | | 3.000 | 261554 | ia
Ē | 900
900
900
900 | 11.08
80.00 | 1.06 | রের | 86 | 5% | 88 | 88 | | | | 3.001 | 281,392 | 卢 | 56 | 95 | ין
סיס
געיי | 866 | 86 | 88 | 98 | | | | | 3-277 | 281582 | 티스텀 | |
 | 1.02
1.02 | 188 | ,00
00
00
00
00
00
00
00
00
00
00
00
00 | 186 | 6.00 |
88 | | | | ₹.001 | 281492 | ja f | 1.09 | 88 | 01.1 | .g.6 | 4.0
8.0 | 8,8 | 8% | 1.02 | | | | 4.499 | 251,393 | i
i | 140
98 | 9.03 | 48 | 888 | 83 | 9.9
84 | 20
20
20 | 4.0
88 | | | | ø.770 | 301879 | 卢苴 | 1.01 | 1.02 | 1.06
1.02 | 85.
65. | 0.99 | 9.3
86.3 | 9.0
88 | 9.9
8.8 | | | | °.000 | 301878 | ភដ | 00
99 | 40.
955 | 1.06 | 0.96
0.95 | 88 | 0.93
9.93 | 4.0
28. | 1.8 | | | . L. longitu | b, longitudinal; IE, long transverse. | long transvo | 1730. | | | # Prom | an Producer C. | All others | apri cri | from Producer A. | | | | | | | | | | | | | | | | | TABLE MAT RATIOS OF TENSIIE, COMPRESSIVE, SHEAR AND BEARING PROPERTIES AT CENTER OF THICKNESS TO THOSE AT MIDWAY LOCATION FOR PLATE OF SEVERAL ALUMINUM ALLOYS IN THE "HEAT—TREATED—LY-USER" TRAFER | <u>.</u> | l | i | | | | | | | | | | | | |---------------|------------|---------------|-----------------|------------------|-------------------|------------|--------------------|-----------|--------------|------------------------|------------------------|---------------|---------------------| | | *
(S) | e/D-
2.0 | 9.00
4.00 | 9.02
96.0 | 20.0 | 1.02 | 0040
8888 | 0.97 | 96.0 | 2000 | 0400
8988 | 200 | 9.0 | | Midvay | BYS
BYS | e/D e/I | 0.0
93
93 | 9.00
9.94 | 9.00 | 999 | 9888 | 88 |
88 | 0000
2000
2000 | 0000
2888 | 0.00 | 0.06
0.94 | | at | # | 80 | 99 | 98 | 86 | 1.01 | 0000
8828 | 0.97 | 6.69 | 8228 | 0000
8000
8000 | 6.00 | 0.96 | | /Propert | EUS (M) | e/D= | 99. | 9.0
8.8 | 9.9 | 28. | 2,8,8,8 | 0.57 | 0.97 | 2000 | 0000
00000
00000 | 0.0
8.8 | 9.9 | | Center | | (H) | 0.92 | 0.0
8.4. | <u>्</u>
श्रम् | 0.93 | 0000
8448 | 0.0
93 | 9.0
4.8 | 0000
80000
80000 | 0000
2004
2004 | 0.0
56.9 | 0.0
20.0
20.0 | | Properties at | | CYS (M) | 88 | 1.04 | 44
88 | 9.4
86. | 4444
98994 | 4.03 | 88. | 4444
%648 | 4444
9849 | 1.06 | 44.05.05 | | Prop | | TYS (C) | 1.00
96. | 1.08 | 1.05 | 90.1 | 480.6
480.6 | 1.05 | 1.01
2.02 | 4444
9999 | 4444
8446 | 1.10 | 1.05 | | | | TUS (C) | 1.02 | 4년 | 00
88 | цч
88 | ucuu
ooob
ra | 1.06 | 88 | 4444
60509
60509 | 11111
9889 | 11.05
0.05 | 80.1
80.1 | | | E E | rec-
tion* | чĦ | 그텀 | 려다 | 다텀 | 다타다 | 려 | 려티 | 다탐다타 | 다타다 | 니컬 | អង្គ | | | plet | Number | 281547A | 281 <i>37</i> 2A | 2813728 | 281,380A | 281383A
281418A | 281387A | 281391A | 301858A
301859A | 281423A
301860A | 301850A | 301851A | | | Semplet | ness,
fn. | 2,500 | 2.001 | 2.001 | 2.250 | 2.522 | 3.001 | 1.625 | 2.280 | 3.001 | 0#0.4 | 008° * | | | | and
Temper | 2014-TG | 2024-T42 | 2024-T62 | 7075-16 | | | 7079-TG | | | | | * L. longitudinal; IM, aung
transverse. † All samples received in the -0 or -F temper from Producer A and heat treated to the "heat-treated-by-user" temper by Alcoa Research Laboratories. † Flatvise specimens. TABER L | | 1 | | | ļ | | | | | | | | |---|-----------------------------|------|-------------|---------|-----------|----------|------------|---------|------------------------------|---------------------|--| | | | | ·/D-2.0 | ä | 8.0 | 8.0 | 88 | 16.0 | 8818 | eele
888 | 8518 | | | | Erst | Q'o | 7 | 3.6 | 7.05 | 88 | 8.0 | 8818 | \$5 8
00 0 | 8518
8518 | | | | H | | 112 | 9.0 | ₹.
0 | 86 | 8.0 | 6.9 | ું
છેલ્લુ | e
28/8 | | | | | \$.140/s | 13 | 8,0 | 0.97 | 88 | %
% | 9919
8818 | 999
488 | 88 5 | | | īđi | | 0.0 | 5 | 86.0 | 86.0 | 88 | 8.0 | 88.6 | 4618 | 9.00 | | | TO THOSE AT MIDWAY LOCATION | ECS1 | 0.5-3/0 | 7 | 96.0 | 3.0 | 88 | 8 | 900
88 | 9999
888 | 9.00 | | | SE AT YOU | A | | ង | 0.97 | 8.9 | 86. | 8, | 88 8 | 900
2019 | 86.6 | | | | | e/0-1.5 | Ţ | 0.97 | 96.0 | 88 | 8.0 | ુગુ
જોજ | ું
જાજા | 9.99 | | 3 | OF THICKNESS
LLOY PLATE | | 38 | 1,1 | 0.92 | 46.0 | 88 | 0.93 | 999 | 0.92 | \$°.9
€.9 | | | CENTER O | | 8 | Ţ | 0.92 | 0.92 | 9.9. | ф.
6 | 2009
2009 | ००।०
४८१४ | 9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00 | | | STIES AT | | | Ħ | 1.04 | 3.06 | 88 | 6.0 | 1.02 | 2519
2818 | 1.02 | | | MONG PROP | | 8 | 1 | 1.08 | મ. | 7.05 | 1.02 | 66.0 | 888 | 10.1 | | | AVERACE RATIOS AHONG | | | Ħ | 1.05 | 3.30 | 88 | 66.0 | 9818 | .889.
88. | 86,68 | | | AVERACE | | TIS | .1 | 1.04 | 1.03 | 4.5
8.8 | 8. | 28/8 | 8818 | 9.1.0 | | | | | 6 | £1 | 1.03 | 70°7 | 88 | 86.0 | 7.00
1.00
1.00
1.00 | 888 | 1.02 | | | | | 103 | ,7 | 1.04 | 1.03 | 28
28 | 3.0 | 9999 | 8.03 | 1.06 | | | | | Today
of | Samples | 6 | | | | | ריי איניא. | | | | | | E per | Tomber. | 2024-1751 | 2024-142 | 2014-1651 | | 707 707
707 761 | 2014-16
2024-142 | 7075-76
7079-76 | f Flatvise specimens. t Weighted average. TABLE I.I. 9499 8489 0000 8888 2,8,9,8, 8,8,8,8 2000 4888 95.8 84878848 87858 84878848 ଚ୍ଚର୍ଚ୍ଚ ଅଧ୍ୟୟ 2439 8848 8888 9999 888 8888 RATICS OF EVARING PROPERTIES IN THE EDGENISS DIRECTION TO THOSE IN THE FLATMISS DIRECTION. POR SITESS-RELIEVED SITESTED PLATE OF SEVERAL ALDMINIM ALLOYS 무 다 다 다 부부부부부 부부부부부 다 부부부 러뉴범뉴 범무류 거참나밝 덕달다 281684 281500 281842* 301876 261410 701877 2.25 2.501 2.773 3.93 1.088 2.001 2.000 7079-1651 1278-1651 Edgovise Properties/Flatvise Propertie BUS(E) BUS(P) BUS(P) प्रवास्ति क्षेत्र व्यव्यव्यक्ष क्षेत्रक्ष्य व्यव्यव्यक्ष 400000 88488*P* ુ. જ **ૢઌઌઌ** ૹૹૹ ७७ ००००० ००००० ० ४४ ४५४५५५ ४५४५५४ ७ ्रेश्ट्रहरूस्ट्रह स्ट्रहरूर् ంంంంంం జలవస్థిక్షశ్రమ్ చల్లకుప్రాత్త egge 50000000 egges 588888888 ०० ०००००० ०००००० ०० ००००००० ० င်္ဂဝဝဝဝဝ အစ္ဆစ္ဆစ္ဆစ္ဆစ္ဆစ္ဆ ००००००० श्रेषक्षेथ्रेश्नेश्चर्ष cooo 0000000 द्वान्द्रम् द्वान्द्रम् व ËL. ㅋ뭐ㅋㅋㅋ สนุสนุสนุส 독합니다니다 Sample Number end Producer 281,486 281824 281510 201819 281373 301848 201846 281412 291487 201845 301782 281749 251697 201787 281750 2.000 1.009 1.891 8.8 3.98 2.000 2.000 85.5 2.535 2.800 80.0 2.515 1.135 2.00 1011-1651 * From Producer B; all others from Producer A. 1 ingitudinal; II, long franswerse. § Falled before reaching 2 per cent offset. TABER LIT RATICS OF ELECTION PROFEREDES IN THE EDGENISK DIRECTION TO THOSE IN THE FLATED FIVERER. THEFAIL ALLIANS IN THE "HEAT-THEATED-BY-USER" THEFER THE THEATEN PLAIL OF SEVERAL ALLIANS IN THE "HEAT-THEATED-BY-USER" THEFER | | | | | स्र अक्टूमक्ट्र ा च | roparties/ | PACVISE | Properties | | | | سللنا | coevies Proporties/Platvise Properties | rocerties/ | Plater Se | Properties | |------------------|--|-------------------|------------|--------------------------------|------------------|----------------------|--|-------------------|-----------|-------------------|--------------|--|---|------------------|----------------| | | S | mple: | ž | STS P | ale. | 3 (E) SAGE | ate | | 8 -70 FEE | nolet | 77 | <u> </u> | | 335(3) | | | Tell P | ness,
In. | "sodany | 28 | 20. | 0.3 | 1.5 | 100
100
100
100
100
100
100
100
100
100 | Periter
Terrer | dan, Man | Mercer | ¥ 5 | -3/2
3/2 | 3.0
10
10
10
10
10
10
10
10
10
10
10
10
10 | 3.5 | 2,2
2,2 | | | 1,001 | 2313664 | 고벍 | 85
20 | 30
30
30 | 6.5 | 86 | 7075-16 | 3.001 | 251387A | ឯដ | 99.
98. | 2.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0
1 | 56.9
56.9 | 8.6 | | | 2.58 | 2215474 | ភូដ | 8.8
33 | 0
0
0
0 | 996
966
967 | 90
90
90 | 7079-16 | 1.001 | 2813864 | J.E | 8,8
33 | 3.0
3.0 | 2.9
2.9 | 4.5
4.5 | | 305r-742 | 1.001 | <i>1.11.</i> €1;e | 려 | გე.
33 | 5/8/
30 | 1.00
9.00
9.00 | 1:03
1:03 | | 1.625 | 7162TG2 | l ali | 60 | \ 86
30 | \$ \$0
\$ \$0 | 8.0
6.0 | | | 2.001 | श्याञ्च | 려 | 2.3
29.3 | નું?
ઉદ્યુ | 88
33 | 88 | | 2.286 | 3016564 | H, | 660 | 4.6 | 93
33 | 3,0 | | <i>2</i> 92-4€02 | 1.001 | श्चित्रस | a£ | چې
ن | 00 | 46 | 88 | | 2.500 | 3013596 | LaH | 1817 | 16/8 | 18.8 | 85. | | | 2.001 | क्त्राध्य | 교범 | 37.0 | 9.0 |
%3 | 9.00
9.00
9.00 | | 100.K | 251123
2035605 | 법 | ឥ ង្គ ្រ | 964
864 | 863 | 9.9.9
8.8.9 | | 7075-Tê | 1.500 | 251,2364 | 25 | 600 | 86.0 | 86 | o.97 | | 3 | 203 Kare | il . | (2) (3)
(3) (3) | (8 S | S 8 | (B. 6) | | | 35.5
55.5
55.5
55.5
55.5
55.5
55.5
55.5 | 2313804 | ria. | 999
999 | 00
00 | 9.9
8.8 | 89 | |) (d | | 1 <u>4</u> , | (S) (S) | 18 8
5 6 | 18) 8
13 c | 18 8
13 3 | | | 2.501
2.572 | 2813524 | ភូដ្ឋិភូរិ | ୦୦୦
ଗ୍ରହ୍ମ | 0000
0000 | 00.30
849.00 | 2539 | | ; | 4 | a# | | 15.
 | ોં
ડે | 18
10 | | | | | ង | గ.
ం | 0.92 | 3. | 05.0 | | | | | | | | - 1 | * 1, longitudinal; L., long transverse. † All anmple: recalved in the -6 or -7 temper (Table I) from Producer A and hat treated to the "heat-treated-by-user" temper by Alcon Research Indonatories. § Pailon before reaching & per cont offset. § Pailon before reaching & per cont offset. TABLE LIII AVERAGE RATIOS OF BEARING PROPERTIES* IN EDGEWISE DIRECTION TO THOSE IN FLATWISE DIRECTION, IN ALIMINIM ALLOY PLATE | | | | | /D=2.0 | 17 | , , , | 00.0 | ₹.00 | | 200 | | 0 07 | 0.0
.00.0 | • | 26.0 | 96.0 | 25.0 | 0.98 | 0.95 | • [| | |-------------|-----------------|--------|-------|---------|-----------|----------|-----------------|-----------|-----------------------|-------|--------|-----------------------|---------------------|--------|---------------------|-----------------------|-----------|--------------------|------------------|---------------|--| | | | , and | DIS | Θ | Ţ | | <i>y</i> | 1.00 | 0,99 | 10/2 | 1.00 | • | 0,000 | • 1 | 5.5
5.5 | 0,0 | 200 | 0 | 90.0 | • • • • | | | TIMIT TO | /मा सम्प्रा बरु | - } | | /D=1.5 | ŢŢ | 96.0 | • | 0.98 | 0.97 | 0.98† | 0.97 | 0.95 | 96.0 | 1 9 | 0.00 | + 00° 0 | 8/8 |) | 0
5
7
7 | 0.95 | | | TOTAL TICLE | Edgew1se/F | | | 9) | 7 | 0.98 | (| 06.0 | 0.97+ | • 1 | 72.0 | 0.95 |)
()
()
() | 0.96 | | 0
0
0
0
0 | 0.97 | | 0,0 | <i>1</i> 1 O/ | | | | ge Ratio: | | | e/D=2.0 | 777 | 0.93 | 90 | 0 | 0
0
0
0
0 | 지 S | • | 0
0
0
0 | 70.0 | 0.95 | | 0.34 | 0.90 | | 000 | 0.93 | | | | Average | BUS | | 6/1 | | 96.0 | 0.97 | · · | 0
0
0
0 | 0.00 | 1 | 0
0
0,0
0,0 | 00
101
101 | 0.95 | 00 | 10.0 | 0.92 | 60.0 | 10.0 | 0.93 | | | | | H | ק ובת | LI | | ည်
သ | 0.93 | | 5,0 | 0.88 | o
o | 200
200
200 | 0.82 | 05.0 | 0.86 | 0.88 | 0.87 | 880 | 0.91 | 0.90 | | | , | | | | | | ?
 | 16.0 | 00 | 0.87 | 8. | 00 | | 0 | 0.91 | 0.90 | S 68 | တ်
ဆို | 16.0 | • ; | 0.92 | | | | | Number | Ofo | Samples | | :
: | Ø | ω | ıΩ | AVG.# | 2 | H
H | V | AVG. # | Q | N C | #.50A | ιΩ | 0 | AVG.# | | | | | Alloy | end | Temper | 2024-T351 | 1 1 1000 | 2024-142 | 2014-T651 | | | -1-16 | 7079-16707
1281-87 |)
-i | • | 2014-T6
2021-E60 | 10T-10T | ,
, | 7075-IG
7079-IG | 04-77-01 | | | | | | | | | | | | | 77 | Ω | | | | | | | | | | | | * At center of thickness. † In some tests, specimen failed before yield strength was reached. ‡ Weighted average. 1 Offset squals 0.2 per cont. * Samples from Producer A. Samples from Producer C. * Samples from Producer C. ** | | 2 | Modulus,
10 ps:
1el Pinal | स्थान्त्रम्य
इ श्लाम्ब्र स | 25.
28. | 223835
223835 | ***** ******************************* | 55
58 | 42
48 | ###################################### | 88
88 | 507.55
507.55
607.55
607.55
607.55 | 10.70 | 3334
8268 | 10.71 | |--------------|--------------|---
---|----------------------|--|---|--------------------------|--------------------|--|--|--|----------------------------------|--|------------------------| | | Source 33 Ye | Koch
Joe
Irat:161 | अस्यम्बद्धाः
१८८७५४ | %;;
;;; | %*******
*** **** | अभ्यम्बद्धाः
अद्ययम्बद्धाः | 1:3
1:3 | 10.98
10.38 | ########
############################# | 85
85
85 | 444444
466444 | 88
88 | 55.55
57.55
57.55 | 55
53
53
53 | | | 8 | Mend Stress, 1 | <i>\$</i> 883883 | 8.8
88 | 737444
888333 | %&&&&
%&&&& | ५५
५३
१३ | 83
85 | \$\$\$\$\$\$\$
443488 | | EEKRE®
8388838 | 76 200
76 900 | 888
888
888 | 88
88 | | 3.44.44.5 | | Jus.
Prost | 305555
305508 | 5.73
10.73 | संस् कृत्यम् <i>ल</i>
संस्कृत्यम् <i>ल</i> | 555555
462828 | 10.45
10.65 | 16.55
10.75 | 83444
8444
8444
8444
8444
8444
8444
844 | 10.33 | 335555
54258
885243 | 88
88 | 3333
1443 | 10.17 | | CANAL SANCON | | Kochlus
10 pst
Initial Fin | 2005555
2005555
20055555
2005555
200555
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
2005
20055
20055
20055
20055
20055
20055
20055
20055
20055
20055
200 | 10.35
10.76 | 444444
464466 | 9.00000
9.00000
9.00000 | 10.65
10.75 | 10.67
10.67 | 555555
588885
588885 | 7.9
19.9
19.9 | 555555
384388 | 88
88 | 2222
2888 | #8.
88. | | | 1000 | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ಕ್ಷಚನ್ನ
ಪಂತ್ರವಾತ | ત્રું.
કંક | ชรุษษานี้
ว่าว่าข้อว่า | တွင်း <mark>က လှင</mark>
ကော်က ာလုံးကို | 25.c
19.5 | นุ่น
กลัง | นี้นี้อีนีนี้ ข
พะเวิจาร์ | 5.50
5.50 | ವಿವಿವಿವಿ ವಳ
ಬೆಂಎಪೆಸೆಂ | 25.55
25.55 | ಬಳ್ಳಳ್ಳು
ರೆಸ್ಕರಂ | 555
500
500 | | | 2 | Meld
Stress, | %%%%%
%%%%%%
%%%%%%
%%%%%%
%%%%%
%%%
% | 88
98
98 | 8 88883
244623 | 84 <i>004</i> 44
88888 | 43
88 | 83
83 | 222225
222222
222222
222222
222222
222222 | | 882228
8822288 | %
%
%
% | 8588
8588
8588 | 79
79
800
800 | | | | Citimate
Stress, | 843438
8883388 | | <i>\$88888</i> | 2888888
888888 | 88
88
88 | 83
83 | \$38888
\$38888 | | 4288875
888888 | 83
83
83 | 8888
8888 | 88
88 | | | 22 | 3 | | 36.93 | 95.4666
95.4666 | भूभूभूपुत्र
स्थित्रहरू | 30.00
10.00 | 30
20 | 555555
575555
575555 | 35.35
35.35 | 888333
048447 | 16.66
10.83 | 33.55
3.88.57
7.88.87 | 10.72
10.61 | | | Cornessive | Mochins, | ಕ್ಷಚಿದ್ದರು
ಜನ್ಗನಿವಿನ್ನು | 88
88 | 3333333
84285 | 500000 | 30.75
16.35 | 36.
88. | સુસુસુસુસ
જ્રમારા જ્યાર | 39
38 | સુરાયુર્ગ
સંયુ <i>ણાવ્યા</i> છે | 30.00
30.50 | 3333
4683 | 10.73
10.53 | | | 3 | Yield
Stress, 1 | 000000 | 53
54
54
54 | #######
\$\$\$\$\$\$ | 883288
883288 | 200
114
200
144 | 48
88
88 | 28888
884483 | | 588888
888888 | 75
55
50
50
50
50 | 8485
8888
8888 | 88
88
88 | | Technology | | 10s, | 333333
200333
200023 | 88
84 | 555555
547744 | รูรุรรรร
รูรรูชรูร | 10.44 | 10.47 | 355555
858553 | 10.00
10.10
10.10 | 555555
565555
565555 | 10.05 | 10.10
10.39
10.39
10.39 | 10.05 | | 2002 | | Modilus,
10 ⁶ pai | 344555
456755 | 10.61
10.61 | 000000
400000
4000000
40000000 | 955555
82548£ | 10.75 | 8.01
10.05 | 444444
443644 | 88
88 | 888888
888888 | 30.
37. | 5555
5555
5555
5555
5555
5555
5555
5555
5555 | 10.2
10.18 | | | 31500 |
1100
1100
1100
1100
01,100 | นูนนูนูนูนูนู
อณีดีกับอ | 25
00 | ध्यप्तप्तम्
००० ००५ | သို့ စုနေလည်စ
စုန်လုံသည် | 4,0
8,8 | 6.1
6.2 | ಇ ಬ್ಬಳಬ್ಬ
ನಂಪಂಪಂ | 25.0 | นุษานุนุนุน
เพ่นเว่อ๋อ๋ | 55.
55. | చబ్బిల్ల
రేబీల్ రే | 17.0 | | | | Yield
Stress, | <i>\$88888</i>
888888 | 88
88 | %4%444
\$ % 88888 | <i>\$</i> 88838 | 22
22
23 | 33
33 | 258888
838888 | | 888388
*********** | 88
88 | 893£ | 48
83
83 | | | | Ultimate
Stress, | 888888
8888888 | | 888388
888388 | 724445
38388
88388 | | 88
88 | \$250
\$250
\$250
\$250
\$250
\$250
\$250
\$250 | 25
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8888888
8888888 | | 2888
2888
3888 | 88
88
88
88 | | | | ART, Sample | 1 | 251263A
251547A | egerije
Egerije | ###################################### | STATES
STATES | 361433B
28137CB | \$37755
875555
8755558 | 2317814
2617814 | 858855
858855
858855 | 23123
2013914 | 2565
2565
2565
2565 | 201830A
281421A | | | | Tatek-
peas | 000444
445288 |
123 | 004464
66888
88888 | 004444
V2040
V04044 | | 88 | 000100
74.5000
74.5000 | 9.54
5.43
5.43 | ๑๐๐
หน่น
หนับ
จึง |
889 | 0044
47.00
64.00 | 888 | | | | Allo | i a | 'n. | 324-1351 | ge- | -742 | -160 | 7075-762 | 92- | 7079- 16 51 | -:6 | 778-761 | ş | TABE IIV RESUL'S OF REPEATED STRESS-STRAIN TESTS 79 TABLE LV AVERAGE RESULTS OF MODULUS DETERMINATIONS | Alloy
and
Temper
2024-T351
2024-T651
2024-T651 | Number of Samples 6 6 6 Avg. | Longitudinal
Initial Fir
10.63 10,
10.70 10,
10.39 10, | 13 | Average Modulusion Long-Transverse Long-Transverse 10.70 10.52 10.75 10.64 10.75 10.64 10.75 10.64 | Modulus Values, isverse Longians Initial Initi | Longitudinal Longitudinal Initial Fin 10.76 10.10.10.10.10.10.10.10.10.10.10.10.10.1 | Compression
Compression
Hinal Long
Final Init
10.76 10.
10.95 11.
10.96 11.
10.67 10. | 10.86 10.88 10.88 11.09 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 10.65 10.66 | 10.88
10.88
10.88
10.82
10.82 | |---|------------------------------|--|-----------------------------|--|--|--|--|---|---| | 7079-1651
7178-1651
2021 mls | AVG. | 10.01 | 10.24
10.20
Heat-Tree | 10.24 10.45 1
10.20 10.42 1
Heat-Treated-by-User
10.56 10.72 1 | 10.21
10.29
er Tempers
10.55 | 10.65 | 10.65 | 10.90 | 10.92 | | 2024-16
2024-162 | P P AVG. | | 1000 | 10.67 | 10.69 | 10.93
10.92
10.92 | 10.94 | 10.92 | 11.04 | | 7075-16
7079-16
7178-16 | 2
2
AVG. | | 10.02 | 10.27 | 10.21 | 10.62 | 10.65 | 10.69 | 10.77 | | 2014 & 2024
7075, 7079 & 7178 | | 10.68 | Weighted 10.57 10.16 | Averages - 10.72 | All Tempers
10.60 1
10.24 1 | 10.89
10.55 | 10.90 | 10.96 | 10.99 | Sheet-Type Specimens Tapered-Seat Specimens | | • | | | | | |---------------|-----------------------------|-----------------|-----------------------------|--------------|-------------| | DIAME | TER, IN. | GAGE
LENGTH, | REDUCED~
SECTION LENGTH, | DIAMETER (D) | LENGTH (L), | | dı | d ₂ | IN. | 171. | 14. | 12. | | 0.500 ± 0.605 | d1 + 0.005 | 2.000 ± 0.002 | 2.250 | 3/4 | 51/2 | | 0.375 ± 0.004 | d ₁ + 0.003 | 1,500 ± 6.002 | 1.750 | 9/16 | 44 | | 0.312 ± 0.003 | $d_1 + \frac{0.002}{0.001}$ | 1,250 ± 3.002 | 1, 500 | V2 | 33/4 | | 0.250± 0.008 | d1 + 0.002 | 1,000 ± 0.002 | 1.250 | ₹6 | 38 | | 0.188±0.002 | d ₁ + 0.002 | 0.750±0.002 | 1.000 | 5/16 | 21/2 | | 0.125±0.001 | d1+ 0.002 | 0.500±0.002 | 0.750 | V4 | 2. | Threaded-End Specimens Fig. 1. General Dimensions of Tensile Specimens. Sheet-Type Compressive Specimen Round Compressive Specimen--1/2-in. diam Shear Specimen | Nominal
Diameter
In. | D, _{1H} . | |----------------------------|--------------------| | 3/8 | 0.3780
0.3720 | | 1/4 | 0.2490
0.2480 | | 3/16 | 0.1865
0.1855 | Fig. 2. General Dimensions of Compressive and Shear Specimens. | A 8 44 | T, in. | W, in. | D, in. | |--------|--------|--------|------------------| | A | 0.064 | 1 | 0.2500
0.2505 | | В | 0.094 | 1 | 0.2500
0.2505 | | ם | 0.094 | 1-1/2 | 0.3750
0.3755 | | F | 0.250 | 2 | 0.5000
0.5005 | Fig. 3. General Dimensions of Bearing Specimens. Sheet-Type Tensile Modulus Specimen Round Tensile Modulus Specimen -- 1/2-in. diam Sheet-Type Compressive Modulus Specimen Round Compressive Modulus Specimen -- 3/4-in. diam Fig. 4. Tensile and Compressive Modulus Specimens. Fig. 5 Fig. 6 | | | | | | ALLININUM COMPANT OF AMERICA THE AND THE STATEMENT PROPERTIES (Flatution Speciments) Tensile Properties (II) Tensile Properties (II) Thickness ZOLA-TÉJI Al Alloy Plate MARTINE AMERICA | |--|---------------------------------------|-----|----------------------------------|---------------------------------------|---| | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | (ni) eesate staati
(ni) eesate staati | HEARTING UI | | (ni) ecante clain | ONTRASH | THICKNESS, Jac. | | | []
0 | | | G | | | | | | | 0
0
0
0
0
0 | | | (III) SECRE STANTI | un anevai | # 1 | (ग) इंडमाइ वास
(ग) इंडमाइ वास | S 2 4
The state of | | Fig. 8 F1g. 9 Fig. 12 | | | ALCOA RESEARCH LABORATORIES ALUMINUM COMPANY OF AMERICA WAY LOSSIVE PROPORTIES TO COMPENSIVE PROPORTIES TO TOTAL OF THE PROPORTIES TO | |--|----------
--| | | | ALCOA RESEARCH ALCHARMING COMPAN WENT OF THE STATE | | /0 | | 2. A. C. | | 0 0 | | 0 | | | | 2.0
B.0 | | | | 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | MINESSIVE YIELD STRESS (L) | <u>o</u> | (II) ESPATE CLEAT SALENST (II) ESPATS (LEAT SALESSATION) 2 | | | | | | 0 0 0 | | 0.00 | | 9 0 | | 00 | | 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | (a) eestre stantalvatienst
(mi) eestre stantalvatienst
8 | | | Fig. 15 | | | | The state of the same s | ~~~~ | |--|---------------------------------------|---|--|--| | | · @} | | | ATORIES AMERICA AMERIC | | | | | 9 | ALCOA RESEARCH LABORATORIES ALUMINUM COMPANY OF AMERICA HER REMEMBER. BATLOS OF TERRITO (I.) and Compressative Proportie Tensile Properties (IK) vs. Thickness TOTS-TEST Alloy Plate | | | , | 0 | 5.0 | ALLOA RESE
ALUMINUM C
THE KEN
BATLOS CO
TO COMPTOS
COMPTOS
CONTINE P | | | 0 | | 0.# | a e | | | 0
0 0 + | Ε Φ | idi
dij | Produces
A | | 0 | Ö | 0 6 | | | | (F) | Q | <u> Р</u> | | o
2 | | | 0 | - 0 | | 1.0 | | Be | | (C) | | n | | YIRID STREES (LT) | COUPRESSIVE XI | (गा) हटकार दायी
(गा) हटकार दाउ | TENSIES YO | THICKNESS, AN | | . 0 | | | | | | | | | 1 1 | | | | | | | | | | Q
O | 0 | 9.9 | | | | | 0 | 0.0 | | | | 0 | ************************************** | 0.0 | | | | 0 0 0 | Ó | | | | | 0 0 0 | (O) | 0.6 | | | 0.00 | | O O O | 0.6 | | | O 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | O O O O O O O O O O O O O O O O O O O | | | | 0.00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
O O O O O O O O O O O O O O O O O O O | 0.0 C O C O C O C O C O C O C O C O C O C | | Fig. 18 Fig. 19 Fig. 21 Fig. 22 Fig. 32. Typical Stress-Strain and Tangent-Modulus Curves for 7075-T651 Aluminum Alloy Plate, 0.250-2.000-in. Fig. 34. Typical Stress-Strain and Tangent-Modulus Curves for 7075-T6 Aluminum Alloy Plate, 0.250-2.000-in. (Heat-Treated-By-User) Minimum ("A" Value) Stress-Strain and Tangent-Modulus Curves for 7079-7651 Aluminum Alloy Plate, 1.501-2.000-in. Fig. 38. Typical Stress-Strain and Tangent-Modulus Curves for 7178-T651 Aluminum Alloy Flate, 0.250-1.500-in. Fig. 40. Typical Stress-Strain and Tangent-Modulus Curves for 7178-T6 Aluminum Alloy Plate, 0.250-1.500-in. (Heat-Treated-By-User)